THE
 COAL VIEWER,
 AND

 ENGINE BUILDER's

 ENGINE BUILDER's

 PRACTICAL

 PRACTICAL

 COMPANION.

 COMPANION.}

BY JOHNCURR, OFSHEFFIELD.

${ }^{(+)}$
 \square

 \qquad

THE MOST NOBLE PRINCE,

CHARLES HOWARD, DUKE OF NORFOLK,

> Earl Marfhal

AND HEREDITARY EARL MARSHAL
Of ENGLAND;
EARL OF ARUNDEL, SURREY, NORFOLK AND NORWICH, ઉc. छૅc. ઉ๘.

THIS

COAL VIEWER,

AND
ENGINE BUILDER's PRACTICAL COMPANION,
1S, (WITH PERMISSION)
MOST HUMBLY DEDICATED,
By His Grace's
Moft Obedient
Humble Servant,
JOHN CURR.

INTRODUCTORY PREFACE.

SHOULD the following fheets meet with approbation from the poblic, equal to the fuccefs, which has attended the execution of the various articles defcribed in their contents, the object of my wifhes will be fully attained;-and, as no work of the like kind has hitherto been publifhed, I flatter myfelf this will be found ufeful.
It feldom falls to the lot of literary men, to be engaged in works of this fort, and therefore profeffing myfelf to be merely a mechanic, it can fcarcely be expected that I fhould convey my ideas in all the elegance of expreffion, of which our language is capable; befides, it muft occur to every reader, that fuch a work as this will not admit of any great choice of words, when it is confidered, that by far the greater part confifts of the various fynonymous technical terms ufed in different parts of the kingdom, and of which, in order to convey a clear idea to every clafs of readers, there are unavoidably frequent repetitions and explanations, and if I have the happinefs to make myfelf underftood on this head, I hope it is all that will be required of me.

The tables and eftimates of this work are the refult of upwards of twenty years fludy and practice, and are extracted from calculations and obfervations, which would have filled feveral volumes. -They were originally compofed for my private ufe and that of my affiftants, in order to facilitate and difpatch bufinefs.-The greateft part of them have been ufed feveral years, and where any error has been difcovered it has been rectified, fo that I have the fatisfaction to affure the public their accuracy may be relied on.

The making and ufe of rail-roads and corves were the firt of my inventions, and were introduced at the Sheffield Colliery about twenty-one

6.] INTRODUCTORY PREFACE.

years ago; they are doubtlefs a great acquifition in rendering the articlé of conveyance much eafier and lefs expenfive, and it is not the leaft convincing proof of their being fo, that they have been generally imitated, and made ufe of in moft collieries for the laft three years, efpecially in the fouthern parts of the kingdom.

The table thewing the quantity of coals contained in an acre, is full as accurate as the fubject requires, and the weight (which varies a little) will be found to anfwer in the average of coal throughout the kingdom.
The various names which I have introduced to diffinguifh the articles that compofe the Steam Engine, may not be intelligible to every one, but as I have in general given a reference to the plate which fhews the form of the figure alluded to, the difficulty will be explained; and for the greater difpatch, I have alfo introduced a reference in the Steam Engine. tables to the page which explains them, as alfo a reference from the page that explains them, to the page of the table where the fundry fizes and dimenfions of the articles fuitable to all Engines are to be found.

1
 THE
 COAL VIEWER, छ゙.
 ON
 CONVEYING COALS UNDERGROUND,

The Collieries which were opened throughout this kingdom in preceding ages, being in a great meafure exhaufted in the baffet, crop, or outbreak coal, and fuch coal as lay within moderate depths of the furface, it has become neceffary to eftablifh works at a greater depth, and in confequence to fink the pits at greater diftanices from each other, (which without improvements are made,) muft increafe the expence of conveying the coals to the bottom of the pits; and the drawing of coals up the fhafts by machines being rendered practicable a few years ago, which affords a very confiderable faving in that article, where the depths are great: this muft of courfe, (to avoid the great expence of finking pits and removing the machines,) point out the neceffity of conveying the coals underground

8.] ON CONVEYING COALS UNDERGROUND.

from a greater diftance than ufual; hence it becomes a meafure of great importance in collieries, to contrive the moft eafy and expeditious mode of fo conveying the coals underground.

The prevailing practice, till of late, in the working of collieries in the neighbourhood of Newcaftle-upon-Tyne and Sunderland, was to draw a fingle corf* on a fled from the workings to the fhaft of the pit, which as thefe workings were extended, and the prices and maintenance of horfes enormoufly encreafed, became an intolerable burthen to the proprietors of fuch works; therefore the viewers or fuperintendents of collieries, have with a great deal of propriety introduced wooden rails, or waggon ways underground, for that purpofe, (or what is generally diftinguifhed by the name of Newcaftle-roads,) and fixed a frame upon wheels capable of receiving two or three of their bafket corves, which upon thefe carriages and roads are drawn by one horfe. But the bafket or twig corf which has fome great perfections to recommend it at Newcaftle-upon-Tyne and Sunderland, where the coals are fmall, (being of a globular form, with a fmall aperture at the top,) cannot with any propriety be introduced in the fouthern parts of this kingdom, where the coals delivered to market are all, or in a great meafure, large.

And

[^0]
ON CONVEYING COALS UNDERGROUND. [9,

And notwithftanding this great improvement, I am of opinion that a greater acquifition is flill to be made with the fame corf, by laying caft iron roads upon the plans hereafter fet forth, and placing the corf upon a fmall frame or tram made upon a proper principle, and hooking or chaining one tram to another, as a view of them plate the 3 d , fig. the $3 \mathrm{~d}, 4$ th, and 8 th points out, which fhews the wheels both in the infide and outfide of the frame.

Having for the above mentioned reafons introduced machines for drawing coals at two of His Grace the Duke of Norfolks Collieries, near Sheffield, I had fill a difficult point to accomplifh, which was, to contrive an eafy and expeditious mode of conveying the coals to the bottom of the pit, in which I have been fucceffful, far beyond my expectations, and perhaps have hit upon a mode fuperior to any thing heretofore practifed, as the refult of feven years experience informs me; I have therefore herein offered to the public the plans and directions for executing both the roads and corves, and every thing relating to the invention, by which means a horfe takes at a moderate draught, nine or ten corves of equal fize to thofe at New-caftle-upon-Tyne and Sunderland, of which, even by their improved mode of conveying, the horfe takes only two or three.

This is however not the only advantage attending thefe

10.] ON CONVEYING COALS UNDERGROUND.

caft iron roads and trams; for by the mode of convering at Newcaftle-upon-Tyne and Sunderland, the weight of the two or three loaded corves, together with that of the frame on which they are placed, is fupported upon a very fhort fpace of the road, (perhaps four or five feet only,) and by my mode of doing it the fame quantity of coals is difperfed upon fix times that fpace; which muft of courfe take off all unreafonable preffure, and render the roads more durable. There are in my opinion many fituations in this kingdom, not only in the coal trade and underground, but for the conveying of goods in fixed fituations of any kind above-ground, which can conveniently be reduced into parcels or portions of five or ten hundred weight each, (or even twenty or thirty if the roads are made a little ftronger,) and where the furface of the ground for conveyance lies tolerably level, or of an eafy defcent, that the caft iron roads and carriages upon the principle of thofe hereafter defcribed, may with great advantage be introduced. And indeed where a mode of conveyance is wanted upon a declining plane of any defcent exceeding three inches to the yard, thefe roads and carriages far exceed any other mode. As all the coals underground to the rije or baffet of the before mentioned collieries are conveyed upon this principle, where the weight and velocity of the loaded carriage acquired in going down the declining plane, take up the empty one, experience

ON CONVEYING COALS UNDERGROUND. [11i.

experience enables me to fpeak to this with precifion; and the curious may, there, have occular proof of the fame.

I have adopted this mode of conveying coals above the ground alfo, for facking them, and find, the fcheme is manageable for three hundred yards diftance.

The expence of fupporting roads and carriages upon thele principles, I am perfectly convinced from experience, is trifling, in comparifon with either the turnpike road, or wooden rail or waggon ways; the execution effected, and the eafe of conveyance are certainly proved to be fuperior, and the firft expence is demonftrably lefs than by either the double rail waggon way or turnpike road; and in regard to collieries in the fouthern parts of this kingdom, where the breakage of coals is of confequence, the lofs fuftained in conveying in large quantities, (fuch as waggon loads,) and in the unloading and loading again into other carriages, is alone a fufficient recommendation.

Some of my readers will perhaps fart an objection and fay, how would you go round the fquare turns underground with fuch long draughts of corves as thefe? To which I anfwer, that in the main roads underground, where the hurrying, putting or conveying by the horfe is introduced, fquare turns are not neceffary; that where turns

12.] ON CONVEYING COALS UNDERGROUND.

are needful, by taking room for a regular curve line, they are rendered very practicable, as the many turns that inevitably attend our prefent underground roads fufficiently demonflrate. The weight and expence of the corf will perhaps alfo be objected to; in regard to weight, in the time of drawing, one corf will always counterbalance another; and in point of $u f e$, I muft take the liberty of obferving, that the modes I have invented of friking, or landing and emptying them, (for which, along with fome other improvements I have obtained his Majefty's Royal Letters Patent,) are rendered perhaps more manageable than any other corf, (the balket corf excepted;) and with refpect to expence, being fo perfectly preferved by my invention of conductors, during their being drawn up a fhaft, by the extreme velocity of machines, (even through a fpace of one hundred and forty yards, in half a minute,) and the margin of the caft iron roads underground preferving them always from wearing againft the fides of the gates or ways, their neceffary repairs are fo trifling, and their duration fo great, as almoft to furpafs conception or belief; the greateft part of the corves at thefe collieries has been in common ufe for five or fix years, and when examined will be found little worfe for the wear.

Thefe roads and corves are alfo applied in fundry collieries where barrowmen only are introduced; and might

ON CONVEYING COALS UNDERGROUND. [13 ,

in my opinion be extremely ferviceable to fundry large lime works in Staffordfhire and Shropfhire. At Froghill, in Staffordfhire, they have a land conveyance for their limeftone, which is three or four miles in length, one half of which is a flat ground, and the other half, about two and a half, or three inches defcent in the yard; thefe roads, which are upon the plan of what is called Newcaftle waggon roads, are laid in a firm manner upon wood, (after having been at a great expence of foneing about ten or twelve inches thick for a foundation;) upon this wood is laid caft iron an inch and a half thick, a part of which weighs in every fingle yard forward one hundred and for-ty-one pounds, and other models weigh only eighty-one pounds : when the waggons come upon thefe roads, which together with the limeftone weighs in the fundry kinds of thefe carriages, they do, and have made ufe of, not lefs than four, five, and fix tons, and I believe as much as feven tons even, which burden being laid all upon four feet in length, the above roads, although enormous in the firft expence, are nothing too ftrong. Were my roads and carriages introduced in fituations fimilar to this, where there is nothing wanted in the road but caft iron plates half an inch thick, (one yard forward of which road weighs about forty-eight pounds,) and a fleeper of wood, four inches by two and a half, at every two yards afunder,

14.] ON CONVEYING COALS UNDERGROUND.

and a fmall carriage upon the confruction of our corves, by which means the draught of the horfe would be difperfed upon twenty yards, inftead of four feet, the favings would be very confiderable indeed; not to mention, that inftead of applying a friction upon the waggon wheel to hold them down the hills, and dragging the empty ones back again by horfes, they might take the opportunity of making the full carriage down hill, take back the empty one, upon the fame principle as we convey our coals down the gates or ways underground at Sheffield and Attercliffe collieries.

That my readers, who are acquainted with the conveying of coals underground, may be enabled to compare my mode of conveyance with what they have feen practifed, I muft inform them, that our corves are collected together on the fides of the main road, (which is nearly a dead level,) in four or five different parts of the works, until they amount to the number of $11,12,13$, or 14 in a place; that each corf contains nineteen pecks Newcaftle meafure, in weight about $5 \frac{1}{2} \mathrm{cwt}$. and that a horfe conveys for a moderate days work, the quantity of one hundred and fifty tons, the diftance of two hundred and twenty yards, by taking in general twelve of thefe corves at a draught, but where the ground defcends half an inch in the yard, a horfe will take double that quantity.

THECORF.

The Corf fully diffected, plate 1 ft , figures $1,2,3,4,5$, $6,7,8,9,10,11,12,13$ and 14 , is adapted chiefly to the long way of working collieries, where the roads along the benk faces are narrow, and where the coals are chiefly fmall, weighs itfelf about twenty-four ftones, and when filled up with large coals, carries about nineteen or twenty pecks Newcaftle meafure, in weight $5 \frac{1}{2}$ or 6 cwt . Fig. 1, fhews the end, fig. 2, the fide, and fig. 3 , the bottom of the corf when turned upwards.

DIMENSIONS.

Length on the outfide 40 inches, breadth 30 ; infide length 38 inches, breadth $27 \frac{1}{2}$ inches, and height $21 \frac{1}{2}$ inches, and fands 30 inches high upon the wheels; contains neat meafure clear of the boxes which cover the wheels, to the freak 20491 folid inches.

DIRECTIONS to the SAWERS.

The fides and ends to be Afh; the fides fhould be fet out $41 \frac{1}{2}$ or 4^{2} inches long, and repeated as often as fuits the timber; cut $1 \frac{1}{2}$ inch thick at one edge, and 1 inch at the other, clear from the faw, and 26 inches deep, which depth

THE CORF.

depth may be made up by two pieces, and dowelled together by the carpenter, if one piece is not found deep enough. The ends fhould be cut $31 \frac{1}{2}$ inches long, 21 inches deep, and 1 inch thick, clear from the faw; boxes to cover the wheels, of deal board $\frac{3}{4}$ inch thick; flags for the corf bottom, of Oak 39 inches long; bars or fpendings of Oak, cut $31 \frac{1}{2}$ inches long, and riven $3^{\frac{3}{4}}$ inches broad and 2 inches thick.

DIRECTIONS to the CARPENTER.

Be very careful to cut out both ends and fides by models, and frame the corf exactly to 40 inches long and 30 inches broad, (outfide dimenfion,) or the rolled iron will not fit. The ends muft be counterfunk $\frac{1}{4}$ of an inch deep, and the fides cut to joint into the ends, as the bottom of the corf, plate 1 ff , and fig. 3 , defcribes.

The caft iron bufhes fhewn, front and fide view, plate 1 ft , and fig. 4 , the holes of which are full $1 \frac{1}{4}$ inch, infide diameter, are let into the fides, and riveted to it, before the corf is put together, and are fixed $16 \frac{5}{8}$ afunder, from center to center, and the center of them is placed two inches from the edge of the wood.

The top fide of the fpending holes, which are 2 inches by 1 inch, are fet out $3 \frac{3}{4}$ inches from the edge of the wood,
and placed juft fo far afunder as to leave 2 inches of folid wood from the end, which fituation leaves only fufficient room for the wheels to work clear, and the fpendings are fhouldered on one fide.

DIRECTIONS to the BLACKSMITH.

The blackfmith muft be very careful to make his axletrees plate 1 , fig. 5 , to the exact length of 2 feet $7 \frac{1}{2}$ inches, and $1 \frac{1}{8}$ diameter when turned in the lathe; the part which muft be turned, muft meafure to the fhoulder of the bofs $4 \frac{1}{2}$ inches, the bofs muft be $\frac{1}{2}$ an inch broad, thence to the edge of the cotter hole which is $\frac{5}{8}$ inch broad, and $\frac{1}{8}$ thick, muft be 1 foot 9 inches, and from the cotter hole to the end muft be $4 \frac{7}{8}$ inches.

The hoop (plate 1, fig. 7, gives an end and fide view, which forms an infide fhoulder for the wheel, muft be malleable iron, $\frac{1}{4}$ of an inch thick, and $1 \frac{3}{4}$ long, with a cotter hole through it $\frac{5}{8}$ of an inch by $\frac{1}{8}$, and this end of the axletree muft be turned 9 inches in length, that the hoop may flide along it, for the convenience of putting on the wheels.

Should the corves be made to draw by conductors, the chains by which they are fufpended muft be made of an exact length ; and the links fhould be $1 \frac{5}{8}$ of an inch cirD cumference;
cumference; and from the center of the tug hole to the center of the ring that connects them, fhould meafure $22 \frac{1}{2}$ inches: and if the corves be intended to be put or hurried by horfes, the links for connecting them muft be made $1 \frac{1}{2}$ inch circumference, and the hook in the turn to be made flat, and very ftrong; the three links and hook muft weigh 3^{lb}. if they be ftrong enough, and fhould meafure $11 \frac{1}{2}$ or 12 inches extreme length.

The rolled irons for the corf require exactnefs in the firt fetting out, but after a fingle model of each is made, it will be found very convenient for marking the reft by.

Fig. 8, is one of the angular bottom plates, the whole length of which is 4 feet $8 \frac{3}{4}$ inches, breadth 2 inches, and bare $\frac{1}{8}$ thick; the firt hole is $1 \frac{1}{4}$ inch from the end, and the middle hole will be found 2 feet $3 \frac{1}{8}$ inches.-Fig. 9, is the plate which lies along the bottom, the whole length 3 feet 7 inches, is full $\frac{1}{8}$ of an inch thick, and $2 \frac{3}{4}$ broad; the end holes are $1 \frac{1}{4}$ inch from the end, (meaning in this and all other cafes where I mention holes, to give the diftance to the centers of them,) and the next hole 4 inches farther, and to the middle hole it will be found to be $16 \frac{1}{4}$ inches.-Fig.10, is the plate that goes up.each comer of the corf; is 4 feet long, $\frac{7}{8}$ of an inch broad, and 5^{-16} thick, and meafures 2 feet $2 \frac{1}{2}$ inches from the turn to the
center of the hole.-Fig. 11, meafures 3 feet $10 \frac{5}{8}$ inches long, 2 inches broad, and bare $\frac{1}{8}$ thick, and is the plate which croffes over the end of the corf; the firft hole is $1 \frac{1}{4}$ inch from the end, and will be found 3 feet $8 \frac{1}{8}$ inches afunder, and the ends are bent down $2 \frac{1}{2}$ inches from the fraight line, at $6 \frac{1}{2}$ inches from the end.-Fig. 12, is the corner plate, the whole length of which is $15 \frac{\frac{1}{2}}{}$ inches, and 2 inches broad, and bare $\frac{1}{8}$ thick; the holes are $9 \frac{1}{2}$ inches afunder, and the turn of the plate falls in the middle of it.-Fig. 13, a fhort plate 9 inches long, 2 inches broad, and bare $\frac{1}{8}$ thick, and the hole is placed 2 inches from the end: this plate is nailed under the fending of the corf, and is brought through the mortife in the fide. All the fquare holes in this rolled iron are $\frac{t}{2}$ an inch fquare, and the round ones are $\frac{1}{2}$ an inch diameter.When the rolled irons are placed upon the corf in their feveral fituations, the holes are filled up with $\frac{1}{2}$ inch fquare or round bolts. . Every other article of blackfmiths work in the corf will readily be difcovered by infpecting the drawing. If the wheel will juft turn round upon the axletree it is quite fufficient, but the bufhes fhould have a full $\frac{1}{8}$ inch play.-Fig. 14 , is the rolled iron by which the corf is fufpended; it is 4 feet long, 2 inches broad, and bare $\frac{1}{8}$ thick; the firft hole is $1 \frac{1}{4}$ inch from the end, the fecond meafures $14^{\frac{1}{4}}$ inches, and the middle part will be found 17 inches.

DIRECTIONS

THE CORF.

DIRECTIONS to the FOUNDER.

The corf wheel, plate 1 , fig. 6, fhews both a fide and end view; the outfide diameter of the model is $13 \frac{1}{4}$ inches, and the weight when caft is 14 lb . 30 zz ; the center hole $1 \frac{1}{6}$ diameter, and the end of the nave meafures 2 inches over, and $2 \frac{1}{2}$ inches in length through the axis. The fpokes, which are eight in number, are $9-16$ of an inch thick in the middle, and $\frac{1}{4}$ at the edge, and meafure 2 inches broad at the nave, and $1 \frac{1}{4}$ at the rim; the rim is $1 \frac{1}{2}$ inches broad on the trod or face, and $9-16$ thick in the middle, and $\frac{1}{4}$ at the edge.
The bufhes, plate ift, fig. 4 , gives a front and fide view of them ; the oblong part meafures 5 inches by $2 \frac{3}{4}$, and is $\frac{3}{8}$ thick, with 4 counter funk rivet holes through, and the circular part which is 2 inches outfide diameter, with a hole through, bare $1 \frac{1}{4}$ inch diameter, meafures $1 \frac{1}{4}$ inch through the hole, and muft be rounged or bored to full $1 \frac{1}{4}$ inch diameter, and the wheels muft be rounged to $1 \frac{1}{8}$ inch full.

[^1]
THE CORF.

The corf, (plate 1 , fig. 15 , fhews the fide view,) is well adapted to fhort work, or what is generally called benks or boards, and where the coals are in a great meafure large, and the bed of coal not very thick.

DIMENSIONS.

Length of the outide $4^{\frac{1}{2}}$ inches, breadth $3^{\frac{1}{2}}$ inches ; infide length $40 \frac{1}{2}$ inches, breadth 29 , and height 19 inches, and fands 26 inches high upon the wheels, which are only 10 inches diameter. Contains neat meafure, 21100 folid inches.

DIRECTIONS to the SAWERS and CARPENTER.

Every article that varies from the other corf, is in the fides, which muft be cut $44 \frac{1}{2}$ inches long, and 23 inches broad, the ends which are 33 inches long and 19 inches broad; the Oak Jpendings which are 32 inches long, and the flags for the bottom $40 \frac{1}{2}$ inches long.

The buthes are $13 \frac{1}{4}$ inches afunder from center to center, and the mortife of the fpendings do not come nearer the corf end than $3^{\frac{1}{2}}$ inches.

DIRECTIONS to the FOUNDER.

The Wheel of this corf, which is 10 inches high, has only 6 fpokes in it, and has in every other part the ftrength of the other wheel; its weight is $9 \frac{3}{4} \mathrm{lbs}$.

DIRECTIONS

THE CORF:

DIRECTIONS to the BLACKSMITH.

The axletree (plate 1, fig. 16, muft be 2 feet 9 iriches long, and muft meafure $4 \frac{1}{2}$ inches to the fixed bofs, which muft be $\frac{1}{2}$ an inch, thence to the edge of the cotter hole, which is $\frac{5}{8}$ long, is I foot $10 \frac{1}{2}$ inches, and from the cotter hole to the end $4 \frac{7}{8}$ inches. The plate that lays along the bottom of the corf meafures from the end to the center of the firft hole $1 \frac{1}{4}$ inch, thence to the fecond $4 \frac{1}{4}$ inches, and thence to the middle $15 \frac{5}{8}$ inches; which makes the plate 3 feet $6 \frac{1}{2}$ inches long; and fhould be $2 \frac{3}{4}$ inches broad, and full $\frac{1}{8}$ of an inch thick, if the corves are intended to be hurried by horfes. The angular bottom plate is 5 feet $11 \frac{3}{4}$ inches long, 2 inches broad, and bare $\frac{1}{8}$ thick; the firt hole meafures $1 \frac{1}{4}$ inch, thence to the fecond hole is 2 feet $4^{\frac{5}{8}}$ inches. The plate that croffes the end of the corf at the top, meafures 4 feet 5 inches long, 2 inches broad, and bare $\frac{1}{8}$ thick, which requires nothing but nail holes in it. The fufpending lug of the corf fhould be 2 feet $3^{\frac{1}{2}}$ inches long, 2 inches broad, and $\frac{1}{4}$ thick; the holes below the fufpending hole may be about 3 inches, and the other hole within 1 inch of the end; the mortife plate is the fame as that of the other corf, and the low comer plate may be 18 inches long, and a fquare hole in it $4 \frac{1}{2}$ inches from the end. The expence of this corf is 21.135 . 6 d . and its weight $2 \frac{3}{4} \mathrm{cwt}$.

Fig. 1 . Page. 15.

Engraved by Tba'Hairisisbogfield.

CAST IRON RAIL ROADS.

THE COMMON PLATE.

THE Plate of general ufe fhewn plate 2 , fig. 8, (which fuits both fides of the road) is 6 feet long, 3 inches broad on the trod, and $\frac{1}{2}$ an inch thick. The margin flands 2 inches high above the plate, and is $\frac{1}{2}$ an inch thick where it joins upon it, but is tapered to the top (which is rounded) to $\frac{3}{8}$ of an inch thick, for the convenience of moulding. There muft be counter funk nail holes within 1 inch of each end, and the lugs for fixing the plate in the fleeper may be $1 \frac{3}{4}$ of an inch long, and meafure when put on $4 \frac{5}{8}$ inches broad over the bottom. One end of the common plate is fhewn on an enlarged fcale, fig. 9 . The joiner muft be particularly careful to make all his models $4 \frac{5}{8}$ inches broad at the ends, as a want of attention to this, occafions a great deal of trouble when the plates are laid down. The weight of this plate is from 47 to 5 olb .

This rail plate is well adapted to the corves heretofore defcribed, and hurrying or putting by horfes; and when greater burdens are neceffary to be taken in each corf, the plates may be frengthened by cafting them 4 or $4^{\frac{1}{2}}$ feet long, and the margins may be raifed $\frac{\mathrm{I}_{2}}{}$ an inch higher

24.] CAST IRON RAIL ROADS.

in the middle, and tapered down to 2 inches at the ends; and if very great burdens are required, the metal may be made in general $\frac{1}{8}$ of an inch thicker; and on the contrary, if the corves are lighter than thofe herein defcribed, the plates may be made $\frac{1}{8}$ of an inch thiner.

THE SLEEPER.

Shewn fig. 10 , on an enlarged fcale, is 3 feet, 4 inches long for the wide corf heretofore defcribed, and 3 feet $2 \frac{1}{2}$ inches for the fraiter one; fhould be fawn out of Oak, $4^{\frac{1}{2}}$ or 5 inches broad, by $2 \frac{1}{2}$ inches thick, and the plate muft be funk down 1 inch deep into the fleeper, and the road muft be laid down $22 \frac{1}{2}$ inches wide, to fuit the narrow corf, and 24 inches wide to fuit the wide one, affording about $\frac{5}{8}$ or $\frac{3}{4}$ of an inch play in the corf wheels, which will be found quite enough in the fraight or eafy bending roads, but for very quick turns the play requires to be $1 \frac{1}{2}$ inches.

BROAD ENDED PLAIN PLATES.

Shewn fig. 1. The narrow end joins the common roads, and the broad end (1 inch broader than the other) joins the turn plates next explained.

CAST IRON RAIL ROADS.

PLAIN TURN PLATES.

Ufed for going round a turn, fhewn fig. 2. The trod or tread of thefe plates are 4 inches broad, and forms a quadrant; and on account of the turn muft be laid $1 \frac{1}{2}$ inches ftraiter than the fraight road. The margin of the infide plate is drawn with a radius of 3 feet 2 inches, and that of the outfide plate is drawn with a radius of 4 feet 11 inches, which will be found convenient for the nar, row corf, and for the wider corf the outfide margin muft be drawh $1 \frac{1}{2}$ inch wider.

PLATES for turning into BENKS or BOARDS.

Shewn fig. 3. The trod in the fraight part of thefe are $3 \frac{1}{2}$ inches broad, and the circular part 4 inches broad, and forms alfo a quadrant: a view of the figure will fufficiently explain it; and for turning into benks, where more room can be given, the breadth of the plates may be the fame as the other, but the margin of the infide plate may be drawn with a 4 feet radius, and muft form a quadrant alfo.

$$
\text { POINTER PLATES. Fig. } 7 .
$$

Ufeful for taking the corves upon the roads; the length of thefe pointers may be about 4 feet 6 inches or 4 feet 9 inches; the pointer end of thefe are $5^{\frac{1}{2}}$ inches broad,

26.] CAST IRON RAIL ROADS.

which admits of them lying 2 inches clofer together at that end of them, and makes the corf pafs on with lefs friction.

PASS BYE PLATES. Fig. 12.

Ufeful for 2 horfes going contrary ways and paffing each other with a draught of corves. The models in general of thefe plates fhould be 4 inches broad of the trod, as they are obliged to be laid a little ftraiter than the common roads. A fight of the figure clearly reprefents the mode of turning out to the right hand, and paffing, which is done very fafely, and without a fwitch rail, as is required in common waggon ways. The firft pair of plates (a) which are 6 feet long continue fraight for 4 feet, and are $7 \frac{1}{2}$ inches broad at the broad end. The fecond length (b) is a double fet, the fhorteft of them muit be 7 feet 3 inches long. The third length (c) requires to be only 6 feet long. A view of the figure will convey a more clear idea than any explanation that can be given, obferving only, that the narrow part in the length (c) where the margins require to be double, on account of a part of the middle plate being without a margin, muft be only $2 \frac{1}{8}$ inches wide; and the common length of plates (d) muft be as often repeated as to allow fufficient room for the draught of corves to fland in the paffing.
fing. To prevent the corf wheels running againft the point, (e) it is neceffary to raife that fide of the road 2 or 3 inches higher, for the length of 3 or 4 pairs of plates; and fuppofing a branch of road is required to be made to a new pit, or any particular place, one end of the above defcribed pafs bye (viz.) (a) (b) and (c). will accommodate fuch purpofe, taking out the plate, (f) and fhortening the two next adjoining plates, and introducing the long plate fig. 1_{3}, with the fwitch rail (g) upon it, which works upon a pin, to turn the corves oceafionally out of the direct line of the road; the part (h) being a fop to prevent the favitch (g) from flying out too far.

PLATES for the MOVING DOUBLE ROAD, to convey large coals upon the GROUND, for STACKING them.
Fig. 4. fhews the platform of the firf pair of plates; as the planking lies nearly level, and the ground defcending, the pointer part (a) which lies upon the planking, muft bend a little downwards, to make it lie folid; a part of thefe plates are alfo fhewn, plate 3 , fig. 1. For 5 inches long, it is let into the planking, and the fimall holes take $\frac{3}{4}$ inch diameter pins of iron, to hold the plates in their places. The fecond length of plates for the finney, which are thofe chiefly ufed, fig. 5 fhews the platform of one pair, and fig. 11 fhews a fide view of the margins.

28.] CAST IRON RAIL ROADS.

Fig. 14 fhews the oak fleeper for the double road with 4 pins, each $\frac{1}{2}$ an inch diameter ftanding up, which goes into the holes in the margin, and holds the plates at proper diftances. The end of thefe plates muft be taken a little under the fquare, that they may move about without injuring the joints.

PLATES for EASY TURNS in the ROADS.

Fig. 6 fhews a pair of plates which bend .18 parts of an inch in the middle, are drawn with a radius of 100 yards, and accommodate a turn of 9 inches in every 5 yards, the road being 2 feet wide. The long fide of the long plate meafures 6 feet, and the fhort fide of it 5 feet 11.94 inches. The long fide of the fhorter plate is 5 feet 11.46 inches, and the fhort fide 5 feet 11.37 inches.

If a few of thefe turning plates are wanted, this great accuracy is not fo important, but if a great length of them is required in a road, if this accuracy is not attended to, the joints will be open, and a great deal of friction will be unneceffarily added. It muft be further obferved, that the long fide of the roads in all turns, muft be raifed 2 or $2 \frac{1}{2}$ inches higher than the infide, by which means the gravity of the loaded corf takes the friction of the wheels from the infide margin of the road.

Fig. 3. p. 25

Fig. 5. p. 27.
p. 24
p. 26.

CAST IRON RAIL ROADS.

If a road is wanted to accommodate a turn of 18 inches in 5 yards (equal to the fweep of a radius of 50 yards,) thefe plates muft bend *. 37 of an inch in the middle; the long fide of the outer plate muft be 6 feet, and the fhort fide of it 5 feet 11.88 inches. The long fide of the inner plate will be 5 feet 10.93 inches, and the fhort fide of it 5 feet 10.81 inches. For a bend of 1.2 inches in every 5 yards, (equal to the fweep of a radius of 75 yards,) the plates muft bend .24 of an inch in the middle. The long fide of the outer plate will be 6 feet, and the fhort fide of it 5 feet 11.92 inches. The long fide of the inner plate will be 5 feet 11.29 inches, and the fhort fide of it 5 feet 11.21 inches. For a bend of 6 inches in every 5 yards, (equal to the fweep of a radius of 150 yards,) the plates muft bend .12 of an inch in the middle; the long fide of the outer plate will be 6 feet, and the fhort fide of it 5 feet 11.96 inches; the long fide of the inner plate will be 5 feet 11.64 inches, and the fhort fide of it 5 feet 11.6 inches.

To explain more clearly what is here meant by a certain defcription of turn (viz.) $6,9,12$ or 18 inches in every 5 yards, fee plate 2 d , fig. 15 , where (a) to $(b),(b)$ to $(c$,) and (c) to (d) meafure 5 yards, and (e) to $(b),(e)$ to $(c$,$) and (e)$ to (d) meafure $6,9,12$, or 18 inches as neceffity requires; by which mode of fetting out you attain a regular turn.

G

[^2]
JINNEY FOR CONVEYING THE CORVES ABOVEGROUND.

Plate 3, fig. 5, gives a front view of the jinney, the barrel (a) of which is 4 feet 6 inches diameter. Fig. 10 fhews the fide view of it, and fig. i, Shews the platform of it, which turns upon a pin in the center, and points to any required direction. A part of the planking for the corves to turn upon, and the points of the plates ($b b$) is alfo fhewn. The ground on which the coals are flacked has a defcent of about 3 inches in the yard from the jinney, and the momentum of the full corves going down the inclined plane, with the affiftance of the communicating ropes, takes the empty corves back to the jinney. If power is wanted, there is a handle (c) to affift the jinney, and if it has too much velocity, there is a brake ($d d$) to retard its progrefs.

FINNEY for CONVEYING the CORVES UNDERGROUND.

Plate 3^{d}, fig. 7 , gives a front view of the jinney; the two rope barrels (ee) are fixed in two inclining board gates, on which the corves pafs, which are divided by a pillar of folid coal 4 yards thick. The ropes communicate round the barrel, and work upon the fame principle as the jinney above ground, before defrribed, and the narrow wheel (f) at one fide of the rope wheel, is to retard its motion by the application of a brake.
31.] JINNEYS for CONVEYING the CORVES.
ESTIMATE of the EXPENCE of the FINNEY ABOVEGROUND, and SCANTLING of the WOOD.
40 fuperficial yards of planking, $1 \frac{1}{2}$ inches thick, and fleepers for the foundation,
C. S. D.
1 Sole tree 7 feet long, and $6 \frac{1}{7}$ inches by $5 \frac{1}{2}$, 36
2 Uprights, 6 feet long and $2 \frac{1}{2}$ inches fquare, 30
2 Side braces, 3 feet 2 inches long, and 3 inches by $2 \frac{1}{2}$, 0 1 0
2 Sole trees, 6 feet long, and $4 \frac{1}{2}$ inches fquare, o 36
4 Braces, 4 feet 8 inches long, and $2 \frac{3}{4}$ by $2 \frac{1}{2}$ 0
${ }_{1}$ Crown tree, 4 feet 10 inches long, and $3 \frac{1}{2}$ inches fquare,. 010
1 Axletree, 3 feet 2 inches long, and $5^{\frac{1}{2}}$ inches fquare, 6
${ }_{2}$ Crofs fheths, 4 feet long, and $3^{\frac{1}{2}}$ inches fquare, 6
8 Arms. 4 feet 3 inches long, and $3 \frac{1}{4}$ by $2 \frac{1}{4}$, 0
2 Cribs, 3 inches by $2 \frac{1}{2}$, and 1 fhroud 7 inches by $1, \ldots \ldots$.... 58
1 Shroud for the middle, $2 \frac{3}{4}$ by 1 , and 1 ditto for the Brake, $2 \frac{3}{4}$ inches fquare, - 40
Boarding the face of the wheel, 6
The brake with 2 pieces, each 4 feet long, and 4 inches by $2 \frac{1}{2}$, 0 o
${ }_{1}$ Piece 2 feet long, and 4 inches by 3 6
Iron work 150
Carpenter's work and fawing, 220
TOTAL AMOUNT. 8. $9 \quad 4$
ESTIMATE of the EXPENCE of the FINNEY UNDERGROUND.
1 Axletree $20 \frac{1}{2}$ feet long and 3 inches fquare, 0100
16 Arms 4 feet long each, and 3 inches fquare, 060
4 Cribs, 3 inches fquare each, and 1 ditto $3 \frac{1}{2}$ by 3 , and brake, $0 \quad 13$ 0
Boarding on the face 3 inches broad, and $2 \frac{1}{2}$ inches afunder,.. $0 \quad 6$ o
${ }_{2}$ Punches or props for the jinney to work in, - 30
Iron work $0 \quad 0$
Carpenter's work and fixing, 6
TOTAL AMOUNT. 6.37 6

MACHINE FOR OPENING DOORS UNDERGROUND.

Plate $_{3}$, and fig. 2, fhews the fide view of the machine, one of which is required on each fide of the door, at about $4 \frac{1}{2}$ yards diffance from it, to allow fpace for a horfe, and room for the door to open. (g) is a moving lever, and (h) is a fmall weight which holds the lever in a proper flate for the corves to catch it; and the door is hung with a clap fufficient to make it fhut of itfelf. Fig. 9, gives the platform of the machine, and (i) fhews the platform of the door. When the corves advance forward, the corner of the firft of them runs againft the lever (g,) and pufhes it forward, until it has performed a fufficient froke at the other end of the lever to open the door, by means of the communicating rope (k). The Corves as they pafs forward, hold the lever in its pofition, and when they have paffed the lever, the board (l) (which forms a feginent of a circle, and is nailed upon the door) prevents the corves from catching it.

> ESTIMATE of the EXPENCE of the MACHINE E Scantling of the WOOD.
> 1 Upright 5 feet long and 7 inches fquare,...................... ○ 3 o
> 2 Arms, 3 feet 3 inches long, and 3 inches by $2{ }_{4}^{3}, \ldots \ldots \ldots \ldots .$. . 1 . 0
> $\begin{aligned} & \text { Lever } 3 \text { feet } 1 \text { inch long, and } 2 \text { inches thick; } 9 \text { inches broad } \\ & \text { at one end and } 4 \text { at the other,................................ } 6\end{aligned}$
> Wheel, 9 inches diameter and 2 inches thick, o o 6
> Sheaves and fixing parts 3 s. Sd.....iron work, 5 s............... o o 8.8
> Carpenter's work and fixing 6s.....Caft iron weight and \} 0 10 9 bufhes, 2s. 3 d. and Rope 2s. $6 \mathrm{~d} . ~\}$
> EXPENCE of the MACHINE on one fide of the DOOR. $\pm 1+5$

MACHINES
 FOR DRAWING COALS.

THE machines for drawing coals, alluded to in the introduction for the conveying of coals underground, being fo great an acquifition to collieries in general, efpecially where the depths are great, the fubject fhould not be paffed over without a further explanation. What is here meant by machines, are the different modes invented for the purpofe of drawing coals or other minerals out of pits, without the ufe of gins, or jack rolls wrought by hand.

Were I to enumerate or explain the many fruitlefs attempts, together with the few fucceffful ones of this nature, which I have feen or heard of, the tafk would be arduous indeed; but a fhort explanation of the principles of thefe in practice, which have fallen within the compafs of my obfervation, may be ufeful to fome of my readers.
The moft ancient machine in my knowledge, now in ufe, is that invented by Menzey, but there are few fituations that afford the requifites neceffary to that invention. A fream of water with a waterfall of about hall the depth of the pit is neceffary, if any bufinefs of confequence nuuft be done. Its conftruction confifts of two rope wheels fixed upon one horizontal axis, which are fo proportioned

34.] MACHINES FOR DRAWING COALS.

to the depths of the water pit and coal pit, as to reach the feparate depths of the pits, by the fame revolutions; and the power applied is a tub of water large enough to overbalance the weight to be drawn.

The fecond is the common machine, greatly in ufe in the neighbourhood of Newcaftle-upon-Tyne, the conftruction of which is, a water wheel and a rope wheel upon one horizontal axis; and the power is a ftream of water fufficient to overbalance the weight to be drawn. The method of obtaining this fream of water in all the collieries in the neighbourhood of Newcaftle-upon-Tyne and Sunderland, where there are, I prefume, no lefs than 30 or 40 in number, is a Fire Engine placed by the fide of the machine, which raifes the water alternately to the top of the wheel; but in two collieries where I have adopted them, the fcheme is more advantageous than thofe at Newcaftle, being able to do without a Fire Engine erected folely for that purpofe; in the winter feafon when water is plentiful, and the engines are generally fufficiently employed with draining the collieries, we have the aid of adjoining brooks which do our bufinefs; and in the fummer feafon, our engines are fo conftructed, as to apply a part of their power to raife the water to the top of the wheel.

MACHINES FOR DRAWING COALS. [35.

The third and laft, of any importance in my knowledge, is the Fire Engine immediately applied to the act of drawing without the aid of a water wheel, of which there are fundry kinds. One is the invention of Meffrs. Bolton and Watts, another of Mr. Cameron, which does not differ much in principle, and a third is the common fire engine, which was firt reduced to practice by the Engineers of Colebrook Dale collectively.
Where the fituation is fuitable, the machine invented by Menzey has fimplicity to recommend it, and by drawing two corves at a pull, is capable of doing a great deal of bufinefs. The common machines with a water wheel and engine, have been chiefly built before the third plan of a fire engine applying its power immediately, was made manageable and ufeful; and as it does not require more than half the power when the engine alone is applied, and the original expence being little more than one third, we can have no difficulty in condemning the further introduction of the water wheel, excepting where a brook can be conveniently had to do the bufinefs.
It feems fomewhat extraordinary, that the drawing by: machines has not yet made greater progrefs in the fouthern parts of this kingdom, which I can fee no objection to, but in two points, and thofe in few cafes only amount

36.] MACHINES FOR DRAWING COALS.

a real difficulty; the firf is the extra hurrying, putting or conveying underground, and the fecond is the difficulty of drawing coals up the fhaft in fuch corves as are capable, of being introduced in thefe parts, where the coals are large, with the quick pace of a machine. In anfwer to the firf objection, I can only obferve, that the inftructions, here laid down for making corves and rail roads, in fituations where the bed of coal affords height for a horfe, or poney 12 hands high, will enable any proprietor or manager of works, to take the coals three or four times the diftance, without incurring any objectionable proportion of comparative expence; and even where men or boys only can be introduced, the quantity conveyed, and the diftance, may be greatly increafed; and with refpect to drawing up the fhafts at a quick pace; being myfelf the patentee for the invention of conductors to prevent damage to the corves and fhafts, I will only recommend it to the interefted public, to take a view of the methods now eftablifhed at fundry collieries near Sheffield, Barnfley and Leeds, and let them judge for themfelves. Thefe conductors are nothing more than two or three upright rods of deal 4 inches by 3, braged upon oppofite fides of the pit, forming mortifes or channels, by which thecorves are conducted, being fufpended upon crofs-bars with rollers at their ends, which run within the mortifes.

THEFIRE ENGINE.

THE nature and principles of the common fire or fteam engine having been heretofore fet forth and demonftratedby much abler pens, and being now, it is prefumed, very well underftood, I fhall be filent upon that head; but when the principles are perfectly known, there remains a great deal to be done to proportion the various fizes and ftrengths of the materials, and arrange them in a proper manner.

If we give a glance through this kingdom we behold with aftonifhment, fire engines, even at the prefent day, that do not more than half the bufinefs they would be capable of, if properly confructed. The various applications to which the fire engines under my care are adapted, have afforded me the opportunity of making feveral obfervations in this moft ufful of all machines, which I conceive to be of too great importance, to pafs unnoticed, and have been fo fortunate as to hit upon fome deviations from the general rule in certain engines I have erected, which have produced an effect far exceeding my expectations, and which I flatter myfelf will be deemed worthy the attention of engineers, as I can inform them, I have obtained a confiderable addition of power, without any increafe of fuel.

It is a well known principle in fteam engines, that the more perfect the vacuum can be made in the cylinder, the greater power you will obtain; and as the vacuum is obtained by fteam, and a jet of cold water, it is obvious that the higher the jack head ciftern is placed that commands the injection, the more minute will be the divifion, and the more rapid the difperfion of the particles of water which condenfe, and in confequence, the more perfect the condenfation. What then can we expect of thofe engines whofe cifterns are placed at the height only of 12 or 14 feet above the top of the cylinder, compared with the cifterns of the engines above alluded to, which are placed about ${ }^{6}$ feet above the top of the cylinder, the confequence of which is, that we obtain a more perfect vacuum than thofe cylinders can obtain with a low fixed ciftern where the injection rifes faintly.

In order that my readers may compare the operation of a fteam engine above alluded to with others now in ufe, and judge for themfelves of their refpective merits, I muft inform them, that the diameter of the cylinder is 61 inches, with two boilers each $14^{\frac{1}{2}}$ feet diameter, which confume 10 cwt . of fmall coal or fleck in an hour; and works a froke 8 feet 6 inches long. For a particular plan of it, fee plate 4 , in which fig. 1 gives a fide view, fig. 3 a front view, and fig. 8 , the platform. The front

THE FIRE ENGINE.

and fide view of its working geer is alfo fhewr fig. 2 , on an enlarged fcale. This engine lifts a fet of pumps of a 13 inches working barrel $24^{\frac{1}{2}}$ fathoms, a $133^{\frac{1}{8}}$ inches fet $23^{\frac{1}{2}}$ fathoms, a 15 inches fet 7 feet 4 inches from the center of the beam, (which is 25 feet long) 5 fathoms, a $15 \frac{1}{4}$ inches fet 6 feet $2 \frac{1}{2}$ inches from the center of the beam $5 \frac{1}{4}$ fathoms, and the jack head fet, which is 9 inches, at 8 feet from the center of the beam, 10 fathoms; all of which when proportioned to the end of the beam, makes it appear that the engine works to 7 lb . per fquare inch upon the pifton.
When it better fuits the convenience of the work, we draw the 13 inches fet of pumps only $45 \frac{1}{4}$ fathoms high, and work a 7 inches fet alfo the fame height, and take off the Chort lafts, which brings the engine to $7 \frac{1}{4} \frac{1 \mathrm{bb}}{}$. preffure upon the fquare inch; but the former flatement is the general fituation of the engine, in which it performs 12 ftrokes each, $8 \frac{1}{2}$ feet neat, per minute, without laying any unreafonable burden upon the boilers.
Perhaps there is not a cylinder of 61 inches diameter upon the common conftruction that works to 7 mb . to the indh, and performs above 10 ftrokes per minute 7 feet long each, with a moderate quantity of fteam, except thofe built upon the fame confruction, fince the engine alluded to was eretted, and ohis it appears is doing near half as much more bufinefs.

THE FIRE ENGINE.

For the information of fuch mechanicks, as have not had an opportunity of making experiments on the power, or burden upon the pifton, by which the engine will do the moft execution, I muft inform them; that when I annexed the fmall lift of pumps 7 inches diameter above mentioned, which raifed the burden of the cylinder to $8 \frac{1}{2} \mathrm{lbs}$. per fquare inch, upon the pifton, it would not, notwithftanding the utmoft efforts were exerted with the boilers, perform above 9 frokes per minute, each ftroke only 8 feet long, which is far inferior to the execution, when burthened to 7 lbs. per fquare inch only.I alfo gave this engine a trial with a burthen of 6.1 lbs . per fquare inch, in which flate it performed more real execution than when burthened to $8 \frac{1}{2}$ lbs. per inch, and fomewhat lefs than when burthened to 7 lbs . per fquare inch; but as the two material parts of the engine (viz.) the regulator and injection by frequent working can feldom be kept perfect, I would recommend that no engine fhould be laid to a higher burthen than $6 \frac{1}{4}$ or $6 \frac{1}{2} \mathrm{lbs}$. per fquare inch.

As every article of the engine here alluded to is upon the common conftruction, excepting the raifing of the jack head ciftern to a good height, we muft inevitably conclude that the extra merits it is poffeffed of, muft arife from that caufe, together with a judicious arrangement and proportioning of its conftituent parts.

In juftice to the public, I cannot conclude this fubject without obferving, that the method of fitting up Engines with valves, is in my opinion preferable to the common regulator and injection cock, as heretofore defcribed, being much lefs liable to be out of order, and more eafy to repair; and the annexed plan, plate 4, fig. 7, fhews a fide view of the low part of the cylinder 48 inches diameter, and working geer, with a fteam cheft upon a good conftruction, (a) being the fteam valve, (b) the injection valve, (c) the hotwell, and fink pipe, and (d) the plug to work the irons; and fig. 6 fhews a front view of the fame.

What I have now chiefly to offer in regard to the Fire Engine, is to give the ftrength and proportion of all the parts, and of all dimenfions of engines, in the beft manner I am able, from the refult of extenfive practice, and accurate obfervation. Thefe dimenfions apply generally to the common engine fitted up with a regulator and injection cock, and the alterations that take place in fitting up the engine with a fteam cheft and valves, are explained in the following inftructions, given under the heads of fire engine materials proportioned, and directions for building the fire engine.

It needs no elucidation to enable us to conclude, that

THE FIRE ENGINE.

the weight or preffure at the bottom of the pumps is much greater than at the top, for which reafon I have endeavoured to proportion the thicknefs of the metal of the pumps to the burthen they have to fuftain. It will alfo be obferved, that all the directions hereafter given relating to the fire engine, fuppofe the froke to be 9 feet long, and to work $8 \frac{1}{2}$ feet neat in common; and I have in my directions for engine houfes, endeavoured to keep them as fmall as can conveniently be difpenfed with, to avoid fuperfluity in expence, and fhorten the timber; and the mode of fixing cylinders upon pillars, and fcrewing them down by under crofs beams, I find by experience to have a better effect, than any ftrength or quantity of crofs beams in the way of hanging the cylinder, that can poffibly be introduced.

The annexed table given in the pages 76 to 81 inclufive, fhews the diameter of the cylinder fuitable to fundry depths of pits and diameters of pumps, and the water fuch engine will draw in a minute and in an hour, performing any given number of 6 feet frokes. For example a 10 inch bore for a pit 50 fathoms deep requires a cylinder 43.1 inches diameter; draws 20 gallons of water at a 6 foot ftroke, and by working 12 ftrokes each 6 feet long per minute, draws 240 gallons of water per minute, or 228 hogfheads and 36 gallons in an hour, and of courfe
courfe if the engine works a 9 feet froke, it will draw juft half as much more water as the table fets forth. But the cylinder muft always be made larger than the direction given in the tables, as $6 \frac{1}{2} \mathrm{lbs}$. per inch is a fufficient burthen for an engine to work to, and the table is calculated at 7 lbs . per inch, and a further allowance muft alfo be made for the jack head, and in calculating thofe allowances, the tables given in pages 82 and 83 , will be ufeful.

FIRE ENGINE MATERIALS

PROPORTIONED.

> Boilers proportionied to Cylinders, fee page 70. Confruction of Boilers, Jee plate 4, fig. 3.

I HAVE in the courfe of my practice, tried both flange boilers, and plain fided ones, with concave and convex bottoms, but muft give greatly the preference to the plain fided ones with concave bottoms; fee the table of directions for making or planning the boilers, page 89 , where the thicknefs of the plates and weight thereof are alfo given; and I would advife, that no boiler fhould be confructed of a larger diameter than 17 feet. The annexed table page 88 , gives the exact length, and breadth of the

44.] ENGINE MATERIALS PROPORTIONED.

plates at each end, for boilers of all dimenfions, and the top plates of a boiler require to fwell a little in middle, fee the table page 91 , which gives the interm diate breadths of them in fundry parts.

DIRECTIONS to the BLACKSMITH for making BOILERS.

The rivet holes of the boiler bottoms fhould be full $\frac{1}{2}$ an inch diameter, as far as the top of the flue plates, and may be 2 inches afunder from center to center of the holes, and for the top of the boiler, they may be $\frac{1}{2}$ an inch diameter, and $1 \frac{3}{4}$ inch afunder from center to center. The over lap of the plates fhould be $\frac{3}{4}$ of an inch on each fide of the center of the rabbit holes, which makes the joints $1 \frac{1}{2}$ inch broad in the double plate.

The proper HEIGHT of WATER in BOILERS.

The Water fhould always fand not lefs than 2 or 3 inches below the joint at the top of the flue plates, and the gauge cock fhould go down to the top of the water.

DIRECTIONS for FIXING the BOILERS.

The plug floor in all the common engines falls $17^{\frac{1}{2}} \mathrm{in}$ ches below the top of the boiler, and in the valve engine it falls 2 feet 1 inch below, and for the height of the boilers

ENGINE MATERIALS PROPORTIONED. [45,

boilers fee page 89 ; and the upper fide of the grate bars in all engines muft be $13^{\frac{1}{2}}$ inches below the laggon or loweft part of the boiler, which laggon fands upon pillars about 15 inches fquare and ${ }_{15}$ inches afunder.

The center of the boiler of the common engine muft be placed at right angles from the center of the cylinder, and of the valve engine that flands at right angles from the feam cheft, and the boiler muft be placed at fuch a diftance from the outfide of the engine-houfe as to leave a fpace of 19 inches, which allows 9 inches for $f u e$, and 10 inches for brick work.

The height from the a/h hole to the top of the grate bars fhould be 2 feet 9 inches, and the foundation fhould be funk 5 or 6 inches lower, for pitching.

The afh hole of the boiler fhould extend ${ }_{1}$ foot beyond the center of the boiler, and the length and width of the afh holes before they are contracted for the fixing of the door, are given for boilers of every fize, page 75 .

The mode of fixing the boiler upon brick pillars, and inclofing it with a circular wall 10 inches thick, as high as the womb of the boiler, and 5 inches thick above, in the fhape of a bottle, I do conceive from 7 years practice, to be a very good method, the heat being admitted to the boiler in a very impartial manner, which not only preferves the boiler, but the grate bars alfo.

46.] ENGINE MATERIALS PROPORTIONED.

CAST IRON PLATES laid over ASH HOLE, plate 5, fig. 22.23
The top fide of thefe plates lies level with the grate bars and door frame, and makes up the fpace between them; and fhould be caft 2 inches thick in the middle, and $1 \frac{1}{2}$ at the ends. For particular dimenfions of thefe plates, fee table, page 75 .

The plate that lies over the door frame againft the laggon of the boiler, muft be hollowed out as fhewn plate 4, fig. 13 , with the radius of the boiler at the bottom of the flue plates, given in the table, page 89 ; the breadth of the broadeft part of thefe plates may be about i3 inches, and the length of them may be about the medium length of the long and fhort fide of the plates above defcribed, and fhould be caft about 2 inches thick.

BUCKETS of CAST IRON, plate 5, fig. $36,37,38$.
All buckets above 9 inches diameter, to be caft $1 \frac{1}{4}$ inch lefs than the working barrel when turned, and fmaller ones about $\frac{3}{4}$ or 1 inch lefs, and thofe that exceed 14 inches diameter fhould be raifed a little on the fides, for the eafe of the lids opening and Thutting, fee plate 5 , fig. $39_{0} 40$, 41 , and the fides of the bucket fhould taper about $\frac{t}{8}$ of an inch in every inch deep. For the depth of them and the frength of the metal fee page 74, and if calt in brafs, may do a little thinner.

ENGINE MATERIALS PROPORTIONED. [47.

CLACK, and BUCKET SHANKS.

For the frength of the malleable iron, fee table page 74*

CLACKS.

To be caft by the directions given for the buckets, excepting only, that the diameter muft be $\frac{1}{2}$ an inch lefs than the working barrel. The frength of the hoop of malleable iron for holding on the leather upon the bucket and clack is thewn table page 74.

CATCH PINS.

To fix in the heads of the regulator beam, are made of malleable iron; fee the length and ftrength of them p. 71.

CYLINDERS. See plate 5, fig. 1.
For the common engine, require the length for a 9 feet ftroke to be 10 feet, and muft be bell mouthed $\frac{1}{4}$ of an inch on each fide; the cup ring to be placed 3 inches from the top, fhould be 2 inches broad and $\frac{3}{4}$ deep; to have 4 lugs for hanging it, fixed at 3 feet 4 inches from the top of the cylinder, 2 of which ftand on each fide of the cylinder oppofite each other, as dotted upon the platform of the cylinder bottom, fig. 5 , with a hole in each lug $1 \frac{1}{2}$ inch fquare. A 70 inch cylinder requires thefe lugs to be 3 inches deep, a 60 thould be $2 \frac{1}{2}$ deep, a 50 fhould be 2 deep, a 40

48.] ENGINE MATERIALS PROPORTIONED.

fhould be $1 \frac{3}{4}$ deep, and a 30 fhould be $1 \frac{1}{2}$ inch deep. The metal of a 56 inches cylinder and upwards, to be left $1 \frac{1}{8}$ inch thick, when bored; of cylinders from 46 to 55 may be 1 inch thick, and of 45 inches and under to be left $\frac{7}{8}$ thick. The flanges of all cylinders as high as 40 inches diameter, fhould be $3^{\frac{1}{2}}$ inches broad, and all above that fize fhould be 4 inches broad. The thicknefs of the flange of a 56 inches cylinder fhould be $1 \frac{3}{4}$ inch, for a 50 fhould be $1 \frac{1}{2}$ thick, for a 40 to be $1 \frac{1}{4}$ thick, and for a 30 to be $1 \frac{1}{8}$ thick. The holes in the cylinder flange may run 9 or ' 10 inches afunder from center to center, and fhould be for all cylinders under 40 inches diameter $1 \frac{1}{4}$ fquare, and all above $1 \frac{1}{2}$ fquare. The cylinder for the valve engine muft be 10 feet 6 inches long, and admits the fteam by an oblong hole, as clofe as poffible to the flange, and the oblong pipe projects out 5 inches; with a flange upon it for the fteam cheft to fix to, as appears plate 4 , fig. 7, and muft have a fnift pipe which falls fair between the lugs, and ftands oppofite to the fteam pipe.

CYLINDER BOTTOMS.

For the common engine fee the platform plate 5 , fig. 5 , and fide view fig. 2 and 3, which require to be caft 12 inches deep, including the flange and bottom. The pipe in the center to admit the fteam in a 70 inch cylinder

ENGINE MATERIALS PROPORTIONED. [49:

(which ftands in all cafes 3 inches above the bottom and 9 inches below it) fhould be 1_{3} inches diameter; for a 60 12 inches, for a fifty $10 \frac{1}{2}$, for a forty. $9 \frac{1}{4}$, and for a 30 , fhould be 8 inches infide diameter. The metal of the fides to be the fame ftrength as the cylinders, and that of the bottom and flange to be the fame thicknefs as the flange of the cylinders above defcribed. The fink pipe for all cylinders above 40 inches diameter to be placed fair under the fnifting, and nearly clofe to the fide of the cylinder, projecting $4 \frac{1}{2}$ inches below the bottom, including the flange, and to be the fame diameter as the fink pipe hereafter defcribed, page 6_{3}; but for cylinders under ${ }_{40}$ inches diameter it muft flope away from the bottom, as defrribed in plate 5 , fig. 33 , and requires a fink pipe of a particular defcription fhewn fig. 34. The fnift pipe ftands nearly oppofite the injection, and projects 5 or 6 inches, and fhould be for all cylinders, $4 \frac{1}{2}$ inches infide diameter. The injection pipe muft not be fixed fair in the middle of the cylinder, (or half way between the lugss,) but muft be fixed 5 inches to the left hand, (looking towards the cylinder,) and muft alfo be laid down to the flange as clofe as poffible; the infide diameters of thefe pipes are given page 72. There muft be 4 lugs caft upon the bottom with a hole in each lug $1 \frac{1}{4}$ inch diameter, (to take the bolts inclofed in the pillars for the purpofe of fcrewing down,

50.] ENGINE MATERIALS PROPORTIONED.

down,) for all cylinders 45 inches diameter and upwards, which lugs muft not be caft to ftand under the hanging lugs of the cylinder, but to fall juft half way between them, the thicknefs of them to be the fame as the hanging lugs, and only 6 inches fquare. The cylinders under 45 inches diameter require only 2 lugs and pillars, but cannot be fixed fquare of the houfe, without interfering with the communicating pipes, and the ftairs or fteps leading down to the afh hole; they muft therefore be fixed in an angular flate, which angle muft be juft 26 degrees to the right hand of the center of the communicating pipe, and taken from the center of the cylinder; in which pofition the under crofs beam will alfo lie for fcrewing down the cylinder, and leave a road down to the afh place. The crofs beams fhould be oak, and a 15 inches brick wall fhould be taken up under them, to make them folid; but where the angular beam is put in, two brick pillars will be fufficient to fupport the crofs beam if fixed in their proper places.

The cylinder bottom for the valve engine of every fize is caft fquare, and requires no fides to it, has a fink pipe and injection hole, but without a feam pipe.

CROSS BEAMS under the PILLARS.

To forew down the cylinder above mentioned, muft lie 1 foot 7 inches below the plug floor in the common engine, but in the valve engine thefe beams form a part of the plug floor. See their fcantlings, \&c. page 70. CISTERNS.

ENGINE MATERIALS PROPORTIONED. [51.

CISTERNS.

For the jack head that flands upon the top of the engine houfe, fee their particular dimenfions page 70.

COMMUNICATING PIPES, plate 5, fig. 24.

For the common engine, the length to the extreme point of the flange is given page 71 , and the metal of all fhould be $\frac{7}{8}$ of an inch thick, and that of the flanges $1 \frac{1}{8}$ thick, and 4 inches broad. The angle of the flanged end of the communicating pipes of all, to be 35 degrees, and muft be hollowed out by a circle of the radius of the boilers, and the valve for letting out the feam may be fixed near the flange. A caft iron ring about 14 inches long, and metal 1 inch thick, for fecuring the joint next the receiver, is much preferable to a lap joint, and fhould be made large enough to allow $\frac{3}{4}$ of an inch for wedging.

For the valve engine they are required to be about 2 feet longer than thofe for the common engine, with a flange at the end to join to the feam cheft, and I would advife them to be caft in 2 parts, with a ring to make the joint good, as defcribed above for the common engine.

CYLINDER BEAMS.

To hang the cylinders upon, for particulars fee page 70.

CHIMNEY PIPES.

For the boilers, fee the diameters of them page 75.

52.] ENGINE MATERIALS PROPORTIONED.

DOOR FRAMES, plate 5, fig. 10.

For all the boilers, the infide height fhould be $13 \frac{1}{2}$ inches, and width 19 inches, the uprights (with holes in them for the hooks $1 \frac{1}{4}$ fquare) to be 4 inches by 5 , and the length of the top and bottom part about 5 feet, and 4 inches fquare.

ENGINE HOUSES.

The infide dimenfions, and ftrength of the walls is fhewn page 70 , and the ground plan of an engine houfe is fhewn plate 4 , fig. 8, and for the number of bricks, mafons bill, and quantity of lime and fand ufed in all engine houfes, in medium fituations, fee page 70 .

FRAMES in the ENGINE HOUSES.

Laid in the walls at the height of the cylinder beams and regulator beam to ftrengthen them, fee page 71, and plate 4, fig. 5 .

GUDGEONS, plate 5, fig. 18, 19.
Proper for the regulator beam to work upon, with a little curve, and are fuppofed to be funk down 1 inch into the beam, which requires no other faftening than 8 iron forews 12 or 14 inches long, fcrewed all their length, commonly called wood fcrews. The central or working part

ENGINE MATERIALS PROPORTIONED. [53.

of the gudgeon fhould always be 1 inch deeper than a femicircle, and project about 4 inches beyond the fides of the beam; for particulars fee page 71 . The chair for the gudgeon will be eafily underfood by referring to the plan plate 5 , fig. 20. 21 .

GRATE BARS and BEARING BARS, plate 5, fig. 11, 12.
The grate bars to be caft 6 inches deep, 3 inches broad at top and $1 \frac{1}{2}$ at the bottom, and fhould have knobs at one end to hold them an inch or $1 \frac{1}{4}$ inch afunder, and knobs alfo in the middle of them 3 inches deep, to prevent them from bending.

The bearers of the grate bars fhould be about 6 inches by 4 ; for the length of all fee page 75 .

HOTWELLS, plate 5, fig. 8, 9 .

For the common engine to be caft $\frac{3}{4}$ of an inch thick, and the height of all 3 feet, the outfide length of all at the top 4 feet, and at the bottom 18 inches, and the /pout to project 4 inches. The center of the feeding pipe on the fides of the hotwell to be all fixed $13^{\frac{1}{2}}$ inches high, and to project about 9 inches; they muft not fand at right angles to the hotwell, but muft flope inwards, forming an angle

54.] ENGINE MATERIALS PROPORTIONED.

of 40 degrees, and fhould incline downwards about 20 degrees, to point to the boiler; for particulars fee page 71.

For the valve engine plate 4 and fig. 7 , (c) fhews their conftruction.

$$
\text { INFECTION PIPES, plate } 5, \text { fig. } 25 .
$$

Shews one of them with a branch upon it, to feed the pifton, and fhould be made as much as poffible of caft iron, the metal $\frac{5}{8}$ of an inch thick, and that of the flanges $\frac{7}{8}$ thick. The injection pipe which lies within the cylinder of the common engine, fhould be alfo of caft iron, metal $\frac{1}{2}$ an inch thick, and wedged in the pipe caft on the cylinder bottom, and the diameter of thefe pipes may be 2 inches, lefs than the directions for injection pipes given page 72 . One end of this fmall pipe is caft clofe, and a fmall door is fixed on the upper fide of it, as defcribed plate 5 , fig. 15 , This door is covered with a plate of malleable iron about $\frac{3}{8}$ of an inch thick, and in the middle of this plate is cut a fquare hole for the purpofe of injecting, which plate may be adjufted by raifing the fide with leather to make the $j e t$ ftrike fair on the center of the pifton; the fize of the injecting hole is given page 72 .

For the valve engine the method of injecting is fhewn plate 4 , fig. 7 .

FACK

ENGINE MATERIALS PROPORTIONED. [55.

fack head working barrels.

Performing $\frac{1}{3}$ of the length of the full froke of the engine, the diameters of them are giveh page 72 , which will be found to afford water enough for condenfing. The length of the working barrel for a 6 feet ftroke fhould be 8 feet, and metal $\frac{7}{8}$ thick when bored, and flanges $1 \frac{1}{8}$ inch thick. The ftrength of the jack head fmooth rods are given page 72.

INJECTION COCKS.

To be made of brafs with fquare fhanks; they are ufed for the common engine only; fee the water way of them page 72 .

FACK HEAD PUMPS.

The metal of them may be $\frac{5}{8}$ or $\frac{3}{4}$ thick, and the joints may be either fpigot and faucet, or hoboy joints run with lead and regulus. The diameter of thefe do not require to be more than the working barrel, as no rod works in them.

MAIN CHAINS.

To fix to the martingals of the regulator beam, fee the plan of a link plate 4 , fig. 4, on an enlarged fcale.

56.] ENGINE MATERIALS PROPORTIONED.

Length of each chain muft be 9 feet 9 inches, the links three and two, and meafures $6 \frac{1}{2}$ inches long from center to center of the pin; for the ftrength of them fee page 72, and obferve that the annexed weight is given for one end of the beam.

MARTINGALS.

To fix to the regulator beam and main chains; two are required at each end, and fhould be about 5 feet 6 inches long, and the annexed weight is given for one end of the beam, fee page 73 .

MAN-HOLES.

To make a road into the boiler, fhould be a plain pipe 2 feet 6 inches long and 21 inches diameter, and the metal $\frac{3}{4}$ thick, with a flange at each end 3 inches broad and 1 inch thick, containing 8 holes 1 inch fquare.

PUMPS, PIPES, or TREES.

The plain pipes to be caft 9 feet long each, and the ftrength may be proportioned as follows. The firf 4 pipes fhould be $\frac{3}{4}$ of an inch thick on the fide, and the flanges 1 inch thick and 3 inches broad. The fecond 4 pipes may be $\frac{7}{8}$ thick and the flanges as above. The next

ENGINE MATERIALS PROPORTIONED. [5\%.

4 pipes may be I inch thick, and the flanges 3 inches broad and $1 \frac{1}{8}$ thick. The next two or three pipes which extend down as low as 42 or 45 yards, (and are as long as the common pipes of any fet ought to be,) may be $\mathrm{I}_{\frac{\mathrm{J}}{3}}$ inch thick, with flanges 3 inches broad and $1 \frac{1}{4}$ thick. The weight, being put upon the pumps, is fufficient to diftinguifh them, and the holes in the flanges for 18 fathoms down, fhould be $1 \frac{1}{4}$ inch fquare to take bolts $1 \frac{1}{8}$ fquare. A pump io inches diameter fhould have 6 holes in the flange, a is inch pump fhould have 8 holes, and a 16 inch pump may do with 8 holes alfo.

The BUCKET and CLACK TREES, fee plate 5, fig. 29, 30 ,

$$
3^{1,} 3^{2} \text {. }
$$

Should be caft 6 feet long each, and fuppofing the whole fet of pumps to be 50 or 54 yards deep, the metal fhould be as follows. The plain part of the pipe fhould be $1 \frac{1}{4}$ thick, the fwelled part at the door $1 \frac{1}{2}$ thick, the projecting part of the door $1 \frac{3}{4}$ thick, the flange of the door $2 \frac{1}{2}$ thick, and the flanges of the pipe $1 \frac{1}{2}$ inch thick, and the bolt (which muft be clofe to the projecting part) fhould be 2 inches fquare, to take bolts $1 \frac{2}{8}$ fquare. The door front or face fhould project $2 \frac{1}{2}$ inches from the fide of the pump, and fhould have a bead projecting

58.] ENGINE MATERIALS PROPORTIONED.

out 1 inch at the bottom for the door to reft upon. The clear height of the door may be 19 inches, and fhould be 1 inch wider than the working barrel. The ftrength of the malleable iron crofs bars for fixing on the door, are alfo given page 74 , fuitable to a fet of pumps 50 or 54 yards deep and may be a little diminifhed for fhorter fets.

The WORKING BARRELS, plate 5, fig. 28.

Should be caft 11 feet long and the metal left $1 \frac{1}{4}$ thick when bored, and the flanges $1 \frac{1}{2}$ thick; and the top end fhould be bell mouthed $\frac{1}{2}$ an inch on each fide, to prevent the buckets from catching.

The WIND BORES, plate 5, fig. 35 .

May be caft 8 feet long with a plain or egg bottom as occafion requires; the metal $1 \frac{3}{8}$ thick and the flanges $1 \frac{3}{8}$ alfo. The fwelled part may be 3 feet long, with holes in it about 2 inches diameter, exceeding the area of the pipe.

DIRECTIONS for FIXING the DIAMETER of PUMPS.

The common pipes fhould be 1 inch larger than the working barrel.

ENGINE MATERIALS PROPORTIONED. [59.

The bucket pipes the fame as the common pipes.
The clack pipe below the feat, to be 1 inch lefs than the working barrel, and the feat at the top to be the fame fize with the working barrel, which fhould taper $\frac{\frac{1}{8}}{}$ of an inch on each fide to an inch deep, and the depth 4 inches.

The wind bore pipe fhould be 1 inch lefs than the working barrel.

PILLARS under the CYLINDER, fee plate 5, fig. 14.
For the common engine are 5 feet 3 inches long, and for the valve engine only 2 feet 5 inches long; to have a hole through them $1 \frac{1}{2}$ inch diameter, and the thicknefs of the metal as given page 73 .

PLUG TREES.

To work the regulator and injection of the engine, take them about 21 feet long, and fcantling $9 \frac{1}{2}$ inches by $4 \frac{1}{2}$.

$$
\text { PISTONS. Jee plate 5, fig. 16, } 17 .
$$

Should be $\frac{1}{8}$ or $\frac{3}{10}$ lefs than the cylinder, the fuffing ring flands 4 inches from the fide, and fhould be 1 inch thick at the bottom, and $\frac{3}{8}$ or $\frac{1}{2}$ inch at the top. There fhould be 4 fquare holes for the fhanks at right angles to each other,

60.] ENGINE MATERIALS PROPORTIONED.

other, at 3 inches from the rim, or one frong hole in the center. A 60 inch cylinder requiring 6 pifton weights, each 3 inches fquare, fhould have 12 holes 1 inch fquare clofe within the rim, to put in bolts for fcrewing down the weights, and I hole more to let out the water occafionally; and the bottom of the pifton fhould be caft a little convex to difperfe the water: for other particulars of the piftons and weights fee pages 69 and 72 .

PISTON SHANKS.

Suppofing 4 to each pifton, fhould fland about 3 feet high, when fixed : the frength of them is given page 73.

REGULATOR BEAMS, plate 4, fig. 1, 3.

The length from center to center of the chains to be 25 feet, and I would advife, where it may be had, to have them in one piece of oak. The fides of the beam fhould be a little rounded, as alfo the top of it, in the length way; and in the breadth way of it, the top fide may be rounded, which leaves the wood in the frongeft fate poffible; for the fcantling of the beams fee page 72, and to fix a beam curved as defcribed plate 4 , the center of the gudgeon requires to be raifed 30 or 3^{1} inches above. the

ENGINE MATERIALS PROPORTIONED. [61.

the frame laid in the wall, to give a 9 feet froke, and allow proper height for the infide Jpring beams (24 inches thick) and about 6 inches for the fprings.

The HEADS for the BEAM.

Are fhewn plate 4 , and require to be $10 \frac{1}{2}$ feet long; the fcantlings are given page 72 .

RECEIVERS, fee plate 5, fig. 4, \%.

For the common engine require the height of all, on the fides, to be 20 inches, the feam pipe above the reciver to fland up 9 inches, including the flange; and the diameter of the fleam pipe to be the fame with thofe placed upon the cylinder bottoms herein before explained, page 48. The projecting pipes that point towards the boilers, fland out 20 inches, and droop $1 \frac{1}{2}$ inch at the end; and their diameters are the fame as the communicating pipes before defcribed. The flanges of all receivers fhould be $3^{\frac{1}{2}}$ inches broad; their thicknefs is given page 73 , and the weight of them given in that table includes the regulator plate and the receiver bottom.

REGULATOR PLATES, plate 4, jg. 7.

Thefe plates form the top of the receivers, the cock hole of which, in all regulator plates, muft fand 3 inches to the M
right

60.] ENGINE MATERIALS PROPORTIONED.

other, at 3 inches from the rim, or one flrong hole in the center. A 60 inch cylinder requiring 6 pifton weights, each 3 inches fquare, fhould have 12 holes 1 inch fquare clofe within the rim, to put in bolts for fcrewing down the weights, and I hole more to let out the water occafionally; and the bottom of the pifton fhould be caft a little convex to difperfe the water: for other particulars of the piftons and weights fee pages 69 and 72 .

PISTON SHANKS.

Suppofing 4 to each pifton, fhould fand about 3 feet high, when fixed : the ftrength of them is given page 73.

$$
\text { REGULATOR BEAMS, plate 4, fg. 1, } 3 .
$$

The length from center to center of the chains to be 25 feet, and I would advife, where it may be had, to have them in one piece of oak. The fides of the beam fhould be a little rounded, as alfo the top of it, in the length way; and in the breadth way of it, the top fide may be rounded, which leaves the wood in the ftrongeft ftate poffible; for the fcantling of the beams fee page 72 , and to fix a beam curved as defcribed plate 4, the center of the gudgeon requires to be raifed 30 or 3^{1} inches above the

ENGINE MATERIALS PROPORTIONED. [61.

the frame laid in the wall, to give a 9 feet froke, and allow proper height for the infide Jpring beams (24 inches thick) and about 6 inches for the fprings.

The HEADS for the BEAM.

Are fhewn plate 4 , and require to be $10 \frac{1}{2}$ feet long; the fcantlings are given page 72 .

RECEIVERS, fee plate 5, fig. 4, 7.
For the common engine require the height of all, on the fides, to be 20 inches, the feam pipe above the reciver to fland up 9 inches, including the flange; and the diameter of the fleam pipe to be the fame with thofe placed upon the cylinder bottoms herein before explained, page 48. The projecting pipes that point towards the boilers, fland out 20 inches, and droop $1 \frac{1}{2}$ inch at the end; and their diameters are the fame as the communicating pipes before defcribed. The flanges of all receivers fhould be $3^{\frac{1}{2}}$ inches broad; their thicknefs is given page 73 , and the weight of them given in that table includes the regulator plate and the receiver bottom.

REGULATOR PLATES, plate 4, fg. 7.
Thefe plates form the top of the receivers, the cock hole of which, in all regulator plates, muft fand 3 inches to the

62.] ENGINE MATERIALS PROPORTIONED.

right of the center of the communicating pipe, (looking towards the boiler,) and muft be 6 inches deep, $1 \frac{1}{2}$ of which flands below, and $3 \frac{1}{2}$ above the plate. The face of the fteam pipe muft alfo project $1 \frac{1}{2}$ inches downwards, the cock hole muft have $\frac{\pi}{8}$ of an inch taper in every inch deep; and there muft be a fmall piece of the low flange of the cylinder bottom and the neck of the receiver taken out, to give room for the cock to work. The Founder will be careful to place the hole diftinguifhed by *, fair over the middle of the communicating pipe, and the firft hole marked with + muft be fair in a line with the hole marked * in the receiver flange, to make the receiver fteam pipes ftand fquare with the engine houfe.

The diameters of all receivers are given page 73 , with their thicknefs of metal, \&c. and the pofition and diameter of the cock holes in the regulators, are given in the fame page. The thicknefs of all regulator plates may be 1 inch, and the regulators fhould be fixed with a fpring to keep them as tight as poffible.

SINK PIPES, fee plate 5, fig. 6.

For the common engines, the metal of them may be $\frac{3}{4}$ thick, their diameters are given page 73, and the fink pipe of the valve engine is diftinguifhed, plate 4 , fig. 7 , by dotted lines.

Plate 5 facint́ paśs 62

ENGINE MATERIALS PROPORTIONED. [68.

 SPEARS with PLATES and RODS.The Jplicing of the joints fhould be 4 feet long; and every other particular for the fpears \&c. is explained page 74, and obferve that the frength of the U plates muft be the fame as the fpear plates.

WASTE WATER PIPES.

The top pipe which joins to the jack head ciftern, is fhewn plate 5 , fig. 26 ; the metal of all may be $\frac{5}{8}$ of an inch thick; and the fize of them is given page 73 .

The WOKRING GEER.

A front and fide view for the common engine are given plate 4 , fig. 2. The height of the regalator axis is 3 feet, that of the firft injection iron axis 4 feet 3 inches, of the fecond do. 6 feet 6 inches, and that of the third axis is 7 feet 5 inches. The width of the plug frame within the pofts is 3 feet, and from the center of the poofs to the center of the moving plug, 14 inches.

[^3]
64.] ENGINE MATERIALS PROPORTIONED.

The table given in the pages 70 to 73 inclufive, fhews the length and ftrength \&ce. of all the materials of an engine of every fize of cylinder, rifing 5 inches in the diameter at a time. For example, a 60 inch cylinder requires 2 boilers each $14 \frac{1}{2}$ feet diameter, with 2 crols beams to fcrew down the cylinder each 11 feet 4 inches long, and fcantling 15 inches by 10 , (but the valve engine requires 3 of them,) 2 cylinder beams io feet 6 inches long and 20 by 18 , and fo on for every other article.

DIRECTIONS

BUILDING ENGINE HOUSES.

AFTER Digging the foundation of the houfe, the firft thing wanted of the carpenter, is a door cafe for taking out the afhes, which fhould be 3 feet wide; the centers ufed by the bricklayer for the openings in the fide walls, that give the communication to the fires, muft be for boilers of every fize, 3 feet 8 inches wide in the narroweft part, a platform of which is defcribed in the plan, plate 4, fig. 8; the height to the top of the arch (as 6 inches are fuppofed to be buried in the pitching) fhould be 6
feet

DIRECTIONS for Building ENGINE HOUSES. [65.

feet 9 inches or 7 feet. A hole to receive the coals muft be left clofe to the afh hole door cafe; the fteps from the afh place to the plug floor may be taken up with the fide walls of the houfe, which may be about 20 inches long; and a fmall window fhould be put in, under the plug floor to give light to the fire man. The upper fides of the crofs beams which are intended to fcrew down the cylinder of the common engine, muft lie exaclly i foot 7 inches below the upper fide of the plug floor; but in the valve engine the crofs beams form a part of the floor. The height from the foundation of the houfe to the upper fide of the plug floor, in both kinds of engines, is explained page 44. In laying the plug floor of the common engine (which muft be pretty frong where the hotwell ftands) the fpace muft be left open, under the receiver, which is formed by the two crofs beams, for a road into the receiver. In the common engines the fpaces in the fide walls of the houre for the communicating pipes to lay through, muft be fet out at right angles from the center of the cylinder, the width of ${ }_{15}, 16$, or 18 inches, and fhould begin at 9 inches below the plug floor, and be taken up as high as 2 feet 6 inches above it, which fpaces fhould be left 5 inches, on each fide, wider in the infide of the houfe, for a brick in length; to give room to wedge the ring tight; but for the valve engine, the communicating pipes go off

66.] DIRECTIONS for Building ENGINE HOUSES.

at right angles, from the center of the feam chef, and the fpaces in the fide walls fhould begin at 12 inches above the plug floor and be taken up 3 feet 6 inches high: as in this engine the feeding pipes cannot be taken through the fpaces leff for the communicating pipes, a hole muft be left 8 inches broad, beginning 4 inches above the floor, muft be taken about 16 inches high, and fhould be fet off at right angles, from 21 inches beyond the center of the cylinder. At the level of the plug floor muft be left a cavity in the end wall of the houre for taking in the cylinder, and it would be well to lay in a plank, at the level of the plugg floor, to preferve the brick work, and this fpace or opening muft be carried up as high as the frame that lies round the building, at the height of the under fide of the cylinder beams defcribed plate 4, fig. 5, by fo much of it as is drawn by parallel lines; the end of this frame (which Ihould be from to to 14 inches fquare) will ferve as a foundation or lentil, to build the end wall upon. The door into the plug floor chamber muft not be forgotten, nor a window at 5 feet above the plugg floor; to give light to the plug man, and after the cylinder and pifton are got up, it would do well in the walling up of that cavity, to put in another window there, leaving a fmall fpace for the convenience of taking away the hot water.

DIRECTIONS for Building ENGINE HOUSES. [67.

The upper fides of the cylinder beams muft lie in feet 7 inches high, above the plug floor, in the common engines, and thofe of the valve engines only 9 feet 8 inches high. Spaces muft be left in the fide walls of the houfe to admit thefe cylinder beams, which fpaces muft be left wide enough for the $c u p$ of the cylinder to pass through, and fo narrow as not to prevent the wedging of thefe beams to the fides of the cylinder; and muft be taken up 4 ond inches above the cylinder floor, to enable the carpenter to wedge down the gylinder beams. Holes muft alfo be left in the walls at the height of the cylinder beams, to receive the joifts of the cylinder floor, and a window muft be fixed in the end wall of the building, to light that chamber : at the height of 9 feet 6 inches above the cylinder floor, (provided the regulator beam is fomewhat curved like the beam defcribed in the plan, plate 4, fig. x ,) muft be laid in another frame of wood, the fame fize as the lower one, to frengthen the building, but with the addition of the dotted lines to it, defrribed plate 4, fig. 5, meafuring to the upper fide of the frame; and if the beam fhould be fraighter, the frame muft be laid a little lower. Upon this frame are laid the double fopring beams for the infide of the houfe, and 2 of them go 18 or 20 inches through the main wall for the convenience of fixing the outfide fpring frame. At the level of the upper fide of the lower

68.] DIRECTIONS for Building ENGINE HOUSES.

fpring beams, is laid the beam floor, and apertures muft be left on the fide walls for the joifts, and at this frame the walls of the houfe are reduced half a brick on each fide. The fide walls being raifed up, about 20 feet above the cylinder floor, will give fufficient height for the working of the regulator beam, obferving alfo that another window muft be put in this chamber, and a cavity left in the main wall for the regulator beam, with a fpace for a road on each fide of it, which cavity fhould be taken 8 or $8 \frac{1}{2}$ feet high above the laft mentioned frame, to the top of the arch. In roofing the houfe a coupling fhould be fixed directly over the center of the cylinder, which will alfo accommodate the pifton blocks, and a projecting piece of wood muft be laid to the beam of the coupling, to fix or fteady the boiler chimney. It is unneceffary to mention that 4 or 6 projecting pieces of wood may be laid in the front wall to $f x$ and feady the fhear legs, and 6 or 8 more pieces to fix the jack head pipes. The jack head or ciftern pillar muft be raifed upon the main wall, and 2 pieces of wood laid acrofs it, at 4 or 5 feet above the roof of the houfe, for the convenience of fixing down the ciftern by bolts; the top of this ciftern fhould be raifed $46 \frac{1}{2}$ feet above the plug floor; and the bricklayer is defired to run all the walls of the building as high as the beam floor, with putty, to unite them well together.

TABLE, showing the WEIGHT and THICKNESS of PISTONS. [6g:
SEE PAGE 59^{*}

TABLE shewing the WEIGHT and THICKNESS of CTLINDER BOTTOMS,
(The depth of all for the Common Engine 12 incher, iacluding the flange, and the Lags 6 inches fquare)
SEE PAGE 4^{8}.

$\begin{aligned} & \text { Botton } \\ & \text { Flange } \\ & \text { and } \\ & \text { and } \end{aligned}$	Flonge it do. amd 3s Lugs it thick.	and 4 broad, Luge 12 thick. Luge 14 thick	$\begin{gathered} \text { Flang } \\ \text { and } \\ \text { nugs } \\ \text { Lug } \end{gathered}$	$\begin{gathered} \text { Flang } \\ \text { nong } \\ \text { Lugg } \end{gathered}$	Flange $1 z^{2}$ do. and 4 broad, Lugs $2 \frac{1}{2}$ thick.
Di.		Di.		Di) c. la. lb.	
1541	266	36	1	O 19	272
41	2763	${ }^{\circ}$	47152	22	28 O 1
42	87015	38100	48160	5823021	282
43	297111	3910111	49 16, 1	2322	${ }^{2}$
50	$\begin{array}{lllll}30 & 7 & 2 & 8\end{array}$	4010	50163	60240	70293
- 5	17736	41110	$\begin{array}{llll}51 & 17\end{array}$	1243	301
21	2	42 11 1 1		2251	
	3381	43112	5	63253	$1{ }^{1}$
23	81	113	541812	6426110	7432
24			55183	3	75
25					

70. 1 FIRE ENGINE MATERIALS PROPORTIONED.

SEE PAGE 64 :

FIRE ENGINE MAATERIALS PROPORTIONED. Eth.

- see page 64:

SEE PAGE 64.

sEE PAGE 64.

MATERIALS for FIXING the BOILERS PROPORTIONED. [75. non

SEE PAGE 4^{2}.

		Diameter of the Cylisder.	Depth of Shaft in Fathoms.	Diameter of the Cylinder.	$\left\|\begin{array}{c} \text { Gallons } \\ \text { drawn at } \\ \text { a } 6 \text { foot } \\ \text { Suroke. } \end{array}\right\|$		Gallons drawn in One Minute.	WATER drawn in one Hour.	
7	5	9.6	55	31.7			68.8	65	33
	10	13.5	60	33.1		8	78.6	74	54
	15	16.6	65	34.5		9	88.4	84	12
	20	19.1	70	$3{ }^{3} .8$		10.	98.3	93	39
	25	21.3	75	37.0		11	108.1	102	60
	30	23.4	80	38.2	9.	12	117.9	112	18
	35	$25 \cdot 3$	85	39.4		13	127.7	121	39
	40	27.0	90	40.5		14	137.6	131	3.
	45	28.7	95	41.6		15	$147 \cdot 4$	140	27
	50	30.2	100	42.7		16	157.2	149	45
8	5	10.9	55	36.2			89.6	85	21.
	10	15.4	60	37.8		8	102.4	97	33
	15	18.9	65	39.3		9	115.2	109	45
	20	21.8	70	40.8		10	128.0	121	57
	25	24.4	75	42.3		11	140.8	134	6
	30	26.7	80	43.6	12	12	1.53 .6	146	18
	35	28.9	85	45.0		13	166.4	158	30
	46	30.9	90	46.3		14	179.2	170	42
	45	32.7	95	47.6		15	192.0	182	54
	50	34.5	100	48.8		16	204.8	195	3
9	5	12.3	55	40.7		8	113	108	
	10	17.4	60	42.5		8	129.6	123	27
	15	21.3	65	44.3		9	145.8	138	54
	20	24.6	70	45.9		10	162.0	154	18
	25	27.5	75	$47 \cdot 5$		11	178.2	169	45
	30	30.1	80	49.1	16.2	12	194.4	185	9
	35	32.5	85	$5^{\circ} .6$		13	210.6	200	36
	40	34.7	90	52.1		14	226.8	216	\bigcirc
	45	36.8	95	53.5		15	243.0	231	27
	50	38.8	100	54.9		16	259.2	246	54

CTLINDERS propontiqued to sunidry Depths, and Sixés of RUMPS.

78. . . CYLINDERS proportioned to sundry Depths, and Sixes of PUMPS.

SEE RAOB 49.

	$\left(\begin{array}{l} \text { Depth } \\ \text { Shaft, } \\ \text { Faths. } \end{array}\right.$	Diameter of the Cylinder.	Depth of Shaft in Fathoms	Diameter of the Cylinder,	Gallons drawn at a 6 foot Stroke.		Gallons drawn in One Minute.	WATER drawn inione Hour.	
								Hoghteads	Gal.
13	5	$17 \cdot 7$	55	$5^{8.9}$			236.6	225	21
	10	25.0	60	61.4		8	270.4	257	33
	15	30.7	65	63.9		9	304.2	289	45
	20	$35 \cdot 5$.	70	66.3		10	338.0	321	57
	25	39.6.	75	68.7		11	371.8	354	6
	30	43.5	80	70.9	33.8	12	405.6	386	18
	35	46.9	85	73.1		13	439.4	418	30
	40	50.2	90	$75 \cdot 2$		14	473.2	45°	42
	45	53.2	95	$77 \cdot 3$		15	507.0	482	54
	50	56.1	100	79.3		16	540.8	515	,
14	5	19.1	55	63.3		7	274.4	261	21
	10	27.0	60	66.1		8	313.6	298	42
	15	33.1	65	68.9		9	352.8	336	
	20	38.2	70	71.5		10	392.0	373	21
	25	42.7	75	74.0		11	431.2	410	42
	30	46.8	80	76.4	39.2	12	470.4	44^{8}	-
	35	50.5	85	78.7		13	509.6	485	21
	40	54.0	90	81.0		14	548.8	522	4^{2}
	45	57.3	95	83.2		15	588.0	560	-
	50	60.4	100	85.4		16	627.2	597	21
15	5	20.5	55	67.9	45.	7	315.	300	
	10	28.9	60	70.9		8	360.	342	54
	15	$\bigcirc 35 \cdot 4$	65	73.8		9	405.	385	45
	20	41.0	70	76.6		10	45°	428	36
	25	45.7	75	79.2		11	495.	471	27
	30	50.1	80	81.8		12	540.	514	18
	35	54.1	85	84.4		13	$5^{8} 5$	557	9
	40	$57 \cdot 9$	90	86.8		14	630	600	
	45	61.4	95	8 g .2		15	675	642	54
	50	64.7	100	91.5		16	11.720.	685	45

CYLINDERS proportioned to sundry Depths, and Sizes of PUMPS. [79.

SEE PAGE 49.
-

	Depth Shaft, Faths.	Diameter of the Cylinder.	Depth of Shaft in Fathoms.	Diameier of the Cylinder.	Gallons drawn at 26 foot Stroke.	$\begin{aligned} & \frac{1}{2} \\ & \frac{a}{3} \\ & \frac{3}{3} \\ & \hline 0 \end{aligned}$	Gallons drawn in One Minate.	WATER drawn in one Hour.	
								Hogheads	Gal.
	5	21.9	55	72.		8	$35^{8.4}$	341	
	10	30.8	60.	75.6		8	409.6	39°	6
	15	37.8	65	78.7		9	460.8	438	54
	20	43.6	70.	81.7		10.	512.0	487	39
	25	48.8	75	84.5		11	$563: 2$	536	24
	30	53.4	80	87.3.	51.2	12	614.4	58	9
	35	57.7	85	90.0		13	665.6	633	57
	40	61.7	90	92.6		14	716.8	682	42
	45	$65 \cdot 5$	95	95.1		15	768.0	731	27
	50	69.0	100	97.6		16	819.2	780	12
17		23.2		76.			404.6	385	21
	10	32.8	60	80.3		8	462.4	440	24
	15	40.2	65	83.6		9	520:2	495	27
	20	46.4	70	86.8		10	578.0	55°	30
	25	51.8	75	89.8		11	$635: 8$	605	33
	30	56.8	80	92.8		12	693.6	660	36
	35	61.3	85	95.6		13.	751.4	715	39
	40	65.6	90	98.4		14	809:2	770	42
	45	6 g .6	95	101.1		15	867.0	825	45
	50	$73 \cdot 3$	100	103.7		16	924.8	880	48
18	5	24.6	55	81.4		7	453.6	432	
	10	$34 \cdot 7$	60	85.0			518.4	493	45
	15	42.5	65	88.5		9	583.2	555	27
	20	49.1	70	91.9		10	648.0	617	9
	25	54.9	75	95.1		11	712.8	678	54
	30	60.1	80	98.3	64.8	12	777.6	740	36
	35	65.0	85	101.2		13	842.4	802	18
	40	$69 \cdot 4$	90	104.1		14	907.2	864	-
	45	73.7	. 95	107.0		15	972.0	925	45
	50	77.6	100	109.8		16	1036.8	987	27

SESE PACE $4^{9:}$

	Depth Shaft, Fatbs.	Diameter of the Cylinder.	Depth of Shaft in Fathoms.	Diameter of the Cylinder.	Gallons drawn at a 6 foot Stroke.	$\begin{aligned} & \frac{3}{2} \\ & \frac{3}{3} \\ & \frac{3}{3} \\ & \frac{2}{5} \end{aligned}$	Gallons drawn in One Minute.	WATER drawn in one Hour.	
								Hogheads	Gal.
19	5	25	55	86.0			505	1	21
	10	36.7	60	89.8		8	577.6	550	6
	15	44.9	65	93.4		9	649.8	618	54
	20	51.8	70	97.0		10	722.0	687	39
	25	57.9	75	100.4		11	794.2	75^{6}	24
	30	63.5	80	1037	72.2	12	866.4	825	9
	35	68.6	85	106.9		13	938.6	893	57
	40	73.3	90	110.0		14	1010.8	962	42
	45	$77 \cdot 7$	95	113.0		15	1083.0.	1031	27
	50	82.0	100	115.9		16	1155.2	1100	12
20									42
	10	38.6	60	94.5		8	641.6	611	3
	15	47.2	65	98.4		9	721.8	687	27
	20	54.6	70	102.1		10	802.0	763	51
	25	61.0	75	105.7		11	882.2	840	12
	30	66.8	80	109.1	80.2	12	962.4	916	36
	35	72.2	85	112.5		13	1042.6	992	60
	40 45	77.2 81.8	90	115.7 118.9		14	1122.8	1069	21
	45 50	81.8 86.3	95 100	118.9 122.0		15	1203.0	1145	45
	50	80.3	100	122.0		16	1283.2	1222	7
21					88.4	7 8 9 10 11 12 13 14 15 16	618.8	589	21
	10	40.5	60	99.2			$707 \cdot 2$	673	33
	15	49.6	65	103.3			795.6	757	45
	20	$57 \cdot 3$ 64.1	70	$107 \cdot 2$			884.0	841	57
	25	64.1	75	110.9			9724	926	6
	30 35	70.2	80 85	114.6 118.1			1060.8	1010	18
	35 40	75.8 81.0	85	118.1			11492	1094	54
	40	81.0 85.9	90 95	121.5			1237.6	1178	42
	45 50	85.9 90.6	95 100	124.9 128.1			1326.0	1263	41
	50	90.6	100	128.1			1414.4	1347	3

CYLINDERS praportieged te sundry Pepths, and Sizes of PHMPS. E8n.

	Depth Shaft, Faths.	Diameter of the Cylinder.	Depth of Shaft in Fathoms.	Diameter of the Cylinder.	Gallons drawn at a 6 foot Stroke.		Gallons drawn in Qne Minute.	WATER drawn in one Hour.	
	5 10 15 20 25 30 35 40 45 50	30.0 42.4 52.0 60.0 67.1 73.5 79.4 84.9 90.0 94.9	55 60 65 70 75 80 85 90 95 100	$\begin{array}{r} 99.5 \\ 103.9 \\ 108.2 \\ 112.3 \\ 116.2 \\ 120.0 \\ 123 \cdot 7 \\ 127.2 \\ 130.8 \\ 134.2 \\ \hline \end{array}$	96.8	7 8 9 10 11 12 13 14 15 16	677.6 $774 \cdot 4$ 871.2 9680 1064.8 1161.6 1258.4 1355.2 1452.0 15488	645 737 829 921 1014 1106 1198 1290 1384 1475	21 33 45 57 6 18 30 42 54 3
	5 10 15 20 25 30 35 40 45 50	$31 \cdot 4$ $44 \cdot 4$ $54 \cdot 3$ $69 \cdot 7$ $79 \cdot 2$ $76 \cdot 8$ $88 \cdot 0$ $88 \cdot 7$ $94 \cdot 1$ $99 \cdot 2$	55 60 65 70 75 80 85 90 95 100	104.0 198.7 113.1 117.3 121.5 125.5 199.4 133.1 136.8 140.3	105.8	7 8 9 10 11 12 13 14 15 16	740.6 846.4 952.2 1058.0 1163.8 1269.9 1375.4 1481.2 1587.0 1692.8	$\begin{array}{r} 705 \\ 806 \\ 906 \\ 1007 \\ 1108 \\ 1209 . \\ 1309 \\ 1410 \\ 1511 \\ 1612 \end{array}$	21 6 54 39 24 9 57 42 27 12
	5 10 15 20 25 30 35 40 45 50	32.8 46.3 56.7 65.5 78.2 80.2 86.6 92.6 98.2 103.5	55 60 65 70 75 80 85 90 95 100	108.6 113.4 118.0 122.5 126.8 180.9 185.0 188.9 142.7 146.7	${ }^{15} 5.2$	7 8 9 10 11 12 18 14 15 16	$\left(\begin{array}{c}8 p 6.4 \\ 921.6 \\ 1036.8 \\ 1152.0 \\ 1267.2 \\ 1382.4 \\ 1497.6 \\ 1612.8 \\ 1728.0 \\ 1843.2\end{array}\right.$	768 877 987 1097 1206 1316 1426 1536 1645 1755	-2 45 27 9 54 36 18 -4 45 27

SEE PAGE 4\%,

SEE PAGE 49.

	Allowing feven pounds preflure upon every fq. Inch of the Cylinder, will counterpoife in pounds averdupoile.	DIAMETER of CYLINDERS	Allowing feven pounds preffure upon every fq. Inch of the Cylinder, will counterpoife in pounds averdapoife:	DIAMETER of CYLINDERS	Allowing 7 pounds preffure upon every fq. in. of the Cylinder, will counterpoife in pounds averdupoife.
8	$35^{1.85}$	33	$59^{87} .10$	5^{8}	18494.59
9	$445 \cdot 32$	34	$6355 \cdot 45$	59	19137.84
10	549.78	35	6734.80	60	19792.08
11	665.23	36	7125.15	61	20457-31
12	791.68	37	7526.48	62	21133.54
13	929.12	38	7938.82	63	21820.76
14	1077.56	39	8362.15	64	22518.98
15	1237.00	40	$8796 \cdot 48$	65	23228.20
16	1407.43	41	9241.80	66	23948.41
17	1588.86	42	9698.12	67	2467962
18.	1781.28	43	10165.43	68	25421.82
19	1984.70	44	1064373	69	$26175 \cdot 02$
20	2199.12	45	11133.04	70	$26939 \cdot 22$
21	$2424 \cdot 53$	46	$11633 \cdot 34$	71	27714.40
22	2660.93	47	12144.64	72	$28500 \cdot 59$
23	2908.33	48	12666.93	73	$29297 \cdot 77$
24	3166.73	49	13200.21	74	30105.95
25	3436.12	50	$13744 \cdot 49$	75	$30925 \cdot 12$
26	3716.51	51	14299.77	76	31755^{29}
27	4007.89	52	14866:05	77	$32596 \cdot 45$
28	4310.27	53	$15443 \cdot 32$	78	33448.61
29	4623.65	54	16031.58	79	34311.76
30	4948.02	55	16630.84	80	$35^{18} 5 \cdot 92$
31	$5283 \cdot 3^{8}$	56	17241.10	81	$36071 \cdot 05$
32	. $5629 \cdot 7.4$	57	17862.35	82	36967.20

- EEE PAOE 47.

WEIGHT of One Foot length of MALLEABLE IRON.

86.3
 WEIGIT δ FLAT and ROLIEDIRON, One Foolgigg.

VEIGHT of FLAT and ROLUED IRON, One Foot long. [87.

SEE PAGE 49.

SEE PAGE 44:

		\%0		
		$=7$		
		\boldsymbol{H}		
		2mo	$\stackrel{\infty}{-1}$	
		\%panos		
		mo		
-moneq aqujo su!pry				
		0		
añox 30 วाร			ヶ\%qua	-
		2¢puar		
		2393	606	
अทีन do dos jo घplog		39930]	+0	
		${ }^{72003}$	- a a cococa a a	
"3xid mid jo quavi		*293ui		
		7393	-n-m.n-ror a a	
'अशणन		*90u		
		72031		
seaw sum unosp ays 				
		73031		
		\%яpovi	Wサस+स0000006006000000	
		12038		
somog fo minupa		7323		

Metal 5 thick.
Metal $\frac{1}{4}$ thick.
Metal $\frac{7}{6}$ thick.
Metal 1 in. thick.

WL of flanges $\frac{4}{4}$ thick no beads.	Wt. of 1 foot long of Pump	Weight of Pump 9 feet long.	Wh. of flange $\frac{1}{2}$ bd. $\frac{1}{4}$ th. no beads.	W. of 1 foot long of Pamp	Weight of Pump 9 feet long.	Wt. of flanges 3 bd. 1 th. no beads.	Wt. of 1 foot long of Pump	Weight of Pump 9 feet long	We, of flanges 3 bd. 1 in. th, no beads:	WL of 1 foot long of Pump	Weight of Pump 9 feet long.

In.	lbs.	lbs.	c.	q. lus.	lbs.	lbs. 1	c. 19	a. 16	bs.	$16 s$.	lbs.	c.	19.	Lbs	lbs	Ubs.		9.
	23.3	28.1	2	124	24.1	34.6	$2{ }^{2}$		7	00.0	00.0		0	00	00.0	00.0	-	-
	25.0	31.0	2	225	25.7	$3^{8.1}$	3^{1}	1	4	00.0	00.0	0	-	∞	00.0	00.0	-	-
	26.5	34.2	2	326	27.3	41.9	32	21	12	00.0	00.0	-	0	00	00.0	00.0	0	0
			,	10		$45 \cdot 6$	31	31	1	0	00.0			0	00.0	00		- 00
	Flang				Plang					Fla								
	39.5	40.	3	2 11 19	40.5	49.2	$\left.4\right\|^{1}$	1	6	41.5	58:4	5	0	7	42.5	68.0	5	$3{ }^{3} 10$
$6 \frac{1}{2}$	41.5	$43 \cdot 4$	3	${ }^{3} 12$	42.5	52.9	42	$2{ }^{2} 1$	14	43.5	62.9	5	1	21	$44 \cdot 5$			1
	43.5	46.4	4	0: ${ }^{1} 3$	44.5	56.5	43	3	21	$45 \cdot 5$	67.1	5	3	5	46.5	. 8	6	$2{ }^{2} 18$
	45.5	$49 \cdot 4$	4	14	46.5	60.1		- 2	27	47.5	71.3	6	0	${ }^{2} 7$	48.5	82.5	7	07
	47.6	52.4	4	15	48.6	63.7	5	2		49.6	75.5			1	50.6	87.3	7	124
$8 \frac{1}{2}$	49.6	55	4	316	50.7	67.31	518	8	12	51.7	75			13	52.7	92.1		12

Plate 5，Fig．35－Page 5^{8}.
Metal one Inch and three－elghtu thick，with Holen in them；fwelled pars thirty Inches loog，and fwelled two Inches on each fidee

WIDTH of the two Rows of Top Plates of BOILERS；in the intermediate parts．
IN INCHES．－SEE PAGE 43 ．
FIRST COURSE OF TOP PLATES．
SECOND COURSE OF TOP PLATĖS．

咅	部年	疑耍	颜		侤	磁	5	3\％	\％id		晨	侤䨖	部	㡈
6	16	16.8	14.9	12	10	7	00．0	－	0.0	． 0	0.0	0.0	0.0	
$6 \frac{1}{2}$	${ }^{15}{ }^{2}$	15.5	14.3	12.3	9.7	${ }^{1}$	－0．0	I	0.0	0.0	0.0	0.0	0.0	－
	$16 \frac{1}{1}$	15.9 16.2	15.4 15.6 1	14.6	${ }^{13} 3$	0.0	$\bigcirc 0$.	${ }^{1} 13$	11.9	0.2	8.4	61	0.0	－
8	16	16.2 16.5	${ }_{15}^{15}$	14.7 14.9	${ }_{13}{ }^{13}$	0.0 0.0	00.0 00.0	${ }^{3} 3$	12.0	10.2	8.2 8.1	6.0	0	
$8 \frac{1}{2}$	16	16.6	16．0	15.0	${ }_{13}$	0.0	0	${ }^{13} 3$	12.0	10.1	8.0	5	0.0	－
	164	16.0	15.5	15.4	${ }_{13}$	0.0	00.	${ }^{13 \frac{1}{4}}$	11.5	9.6	7.6	5	0.0	－
	16	16.3	$15 \cdot 7$	14.8	${ }^{13}$	0.0	－0．	${ }^{13}$	12.0	10.3	8.3	，	0.0	－
	16	16.5 16.5 1	15.8	14.9 15.1 15	${ }^{13}{ }^{2} \frac{2}{4}$	0.0	\bigcirc	${ }^{13}{ }^{\frac{2}{3}}$	12.0	10.2	8.1	6.	0.0	0
	$16 \frac{6}{8}$	16.5	16.0 16.3	12.1	14.0	$14 \frac{1}{4}$	－0．0．	$1{ }^{14} 1$	12.0	10.1	． 0			\bigcirc
$11 \frac{1}{2}$		16.8	16.4	15.8	15.0	$14 \frac{1}{4}$	00.0	16.	14.6	12.9	11.1	9．1	7	
	${ }^{16}$	${ }^{16.4}$	16.1	15.6	14.6	${ }^{18}$	00．0	164	14.5	12.8	10．9．	8		
	$16{ }^{\frac{3}{8}}$	16．5	16.2 16.2	15.5 15.8	14.6	${ }^{13} 8$	00.0 00.0	16	14.5 14.5	12.8	10.8	8.9	7.0	
${ }_{3} 13$	${ }^{1} 7$	16.8	16.6	16.2	15.7	15.0	13 \％	16	14.9	13.5	12.0	10.4	8.7	${ }^{6}$
	16	16.5	16.0	15.8	15.2	1	${ }^{13}$	16	14.8	${ }^{13} 4$	21.8	10.3	5	
	$16 \frac{1}{8}$	16.5		16.0 16.0	$15 \cdot 4$ $15 \cdot 4$	14.6	13 13 13 1	16	14.7	18.4		10	8.4 8.3	6
		16.8	16.5	16.0	$15 \cdot 5$	14.6	${ }_{13}{ }^{3}$	16	14	${ }_{13 \cdot 2}$	11.6	－	8.2	${ }_{4}^{4}$
	16	16.5 16.6	16.2	15.7	15.1	14.4	${ }^{13}$	$16^{\text {d }}$	14.6	13.2	11.	9.8		6
					15．2		13				4	$9 \cdot 7$	7.8	6

99.3 QUANTITY and WEIGHT of COAL in a Statute ACRE:

QUANTITY añd WEIGHT of COALS in a Slatule ACRE.

Height of the Bed.	NEWCASTLE MEASURE.			Waggona, 95 feet, or so Boles.	Tons, ${ }_{20}$ Cwt. each.	Stacks, 56 folid Feet.	Stacks, 60 folid Feet.
	Boles.	Chaldrons.	Tens of 440 Boles, or 55 Cubic Yards				
P. in.							
4.10	62382	2599.2	141.7	3119.1	7366	$5{ }^{1} 98$	4851.
11	63457	$2644{ }^{\circ}$	144.2	3172.8	7493	5288	4935
5. 0	64538 65608	26888	${ }^{1} 46.6$	3226.6	7620	5371	5018
1	65608 66684		149.1	3280.4	7747	5467	5102
3	66684	2778	351.5	3334.2	7^{874}	5556	5185
3	67760 68835	2828.2	154.0	$33^{88.0}$	8001	5646	5269
5	68835	2868.0	156.4	3441.7	8128	5736	5352
5	69911	2912.8	158.8	$3495 \cdot 5$	8255	5825	5436
7	70986	29577	161.3	$3549 \cdot 3$	8382	5915	5519
7	72062 73187	3002.5	163.7	3603.1 365.8	8509 8606	6005	5603
9	74218	3047.3	168.2 168.6	365		6184	5686
10	75288	80986.1.	171.1	8764.4	8890	6184	5770 585
11	76364	31817	173.5	$3^{818.2}$	9017	6363	55937
6. 0	7144°	3226.6	176.0	$3^{8} 72.0$	9^{144}	6453	6021
1	78515	$3271 \cdot 4$	1788	$3925 \cdot 7$.	9271	$654{ }^{2}$	6105
2	79591	$33^{16.2}$	180.8	8979-5	9398	6632	6188
	80666	8361\%	183.3	4033-3	9525	67^{22}	6272.
4.	81742	3405.8	185.7	4087.0	9652	6811	6356
	82817	3450.6	188.2	4140.8	9779	6901	6439
	83898	$3495 \cdot 4$	190.6	4194.6	9906	$699{ }^{\circ}$	6522
	84968	$3540 \cdot 2$	198.1	4248.3	10033	7080	6606
9	86044	$35^{8} 5^{\circ}$	195.5	4302°	10160	7170	6690
9	87119	3629.8	198.0	4355.8	10287	7259	${ }^{6} 774$
10	88195 8989	8674.6	200.4	4409.6	10414	7349	685^{8}
7. 0	90346	3719.5 3744	202.6	4463.4 45172	10541 10668	7439	6942 7024
1	91427	$3^{809} \cdot{ }^{-2}$	207.7	4571.0	20795	7618	7108
2	98497	3854.0	210.2	4624.8	10922	7708	7192
3	$9857{ }^{2}$	$3^{889} 9^{-8}$	212.6	4678.6	11049	7797	7276
4	94^{648}	3948.6	215.1	4732.4	11176	7887	7360
5	957^{24}	3988.4	217.5	$47^{86.2}$	11303	7976	7442
6	96800	4038.2	220.0	4840.0	11430	8066	7528
	97^{875}	4078.0	222.4	4893.8	11557	8156 825	7611
9	98951	4122.8	224.8	4947.6	11684	8245	7694
10^{9}	100026	41676	227.3	5001.3	11811	8335	7777
10	201102	4212.4	229.7	5055°	11938	$8{ }^{824}$	7860
$8{ }^{11}$	102177	$4257 \cdot 3$	232.2	5108.7	12065	85^{14}	7944
8. 0	103253	4302•2	234.6	$5162 \cdot 4$	12192	8604	8028

	Thirty Inches CYLIN DER.	Fort, Inches Crinder.	Prify Inches CYLINDER.	Stxty Inches C Y LINDRR.
	Deptheo Fathoms, Lif is Fatboms, in Inches Bore, Pit $7 \frac{1}{2}$ feet Diam	Depth go Vethomi, Life as Frathome, 18 Inches Bore, Pit $7 \frac{1}{2}$ feet Diam	Depthyo Eathome Lif 3^{5} Fathomb, ig lachel Bore, Pie $7 \frac{1}{2}$ feet Diam	Depth go Fathoms, Lif 47 Pathome, 14 Inches Bore, rit 8 feet Diam.
Engine Wright,	$\begin{aligned} & 80 \varepsilon \\ & 40 \end{aligned}$	${ }^{150 E} 60$	$\begin{gathered} 249 t . \\ 80 \end{gathered}$	350% 100
Touph compleat, with Bolte, \&c. . -	123	240	340	60
	19	43	58	
Buntoas, stays, with lander Boxes and fixing, -	18	35	48	70
Sherr Legit compleat, with Matleable Iron; -	8	5	8	10
Caplon compleat of Wood, Caf Iron, sheave, 4 ¢c.	25	39	50	55
And foppoing the off take drit to con	20	32	34	60
Expence of the Shaft,	328	604	85^{8}	
29. Expence of theEngiiet a above,		827	1146	${ }^{1} 556$
14. Expence of to much of the Winning.	928	1431	2004	2741

OBSERVATIONS

on the Foregoing Fire Engine and Colliery Eftimates,

THESE Eftimates of the expence of building Steam Engines, are applicable to thofe ufed in manufactoties as well as collieries, and include every article in the Engine Houfe, ant take in the outfide main chain of the regulator beam and fpring frame alfo; and the prices are fixed agreeable to the general rate of charges in this neighbourhood, at the prefent time, fuppofing all the articles to be manufactured in a compleat and fubflantial manner, and the erections made near a Foundery. The bricks are laid at 16 s . per thoufand, lime 13 s . per chaldron, timber from 1 s .8 d . to 5 s . per foot for the largeff regulator beam, deal timber 17 7 . per foot, cylinders and cylinder bottoms 255 . per cwt . houfe water pipes 14 s . per cwt . grate bars and beam gudgeons 12 s . per cwt . Hotwells $\mathbf{1 6 5}$ s. per cwt . and boilers 40 os . per cwt.; and whoever wifhes for information on this fubject, will draw a comparifon of the price of the above articles with that in his own neighbourhood.

With refpect to the eftimates on new winnings or openings of the fundry depths above fet forth, the local circumftances are fo various, that little ure. ful information can be fuppofed to be derived from them; but as it frequently happens that gentemen who undertake works of this kind, having little or no knowledge on the fubject themfelves, wifh to form fome idea before the undertaking is commenced; if they will make allowance for all other expences neceffary to compleat the winning, which every fituation muft point out for itfelf, fuch as boring, coals to work the engine, enginemen, agency, corves, ropes, roads, buildings, machines, gins, ftaiths, ponds, \&c. \&c. the eftimates herewith annexed will be of fome fervice to them, fuppofing the fize of the engine annexed to the feparate depths of the winnings are proper; but as to the real expence to be incurred in opening new collieries, it would be rafhnefs to attempt to fet them forth with any tclerable degree of accuracy, when the place for the winning is even particularly pointed out, much lefs to attempt to give the expence in the way of general eftimates.

There are doubtlefs fundry cafes in this kingdom wherein the article of the engine pit expences, particularly fpecified in the eftimate, may be got executed for a much lefs fum, and where even a lefs engine would be fufficient to drain the work, and others may coft even more than thofe fums; and if larger or additional engines be wanted, the expences of courfe muft be greatly encreafed.

ERRATA.
Page, Line.
11, 2, for occular read ocular.
13, 9, for poneing read foning.
14, 10, for gates read gaits.
24) 5 , for thiner read thinner.

45, 7, for that fands read it flands.

[^0]: * A machine made of wood or twigs, in which the coals are drawn from the face of the vein or bed, to the bottom of, and up the fhafts.

[^1]: ESTIMATE of the EXPENCE of the CORF.
 6 ft . 7 lb . of iron work, at 5 s . per ftone,........................... 1126
 Turning the axletrees, and rounging the wheels and bufhes,.. 024
 Ends and fides, and fawing them,................................. o 40
 3 bars in the bottom, and boxes for covering the wheels,....... 11
 Carpenter's work, and laths or flags for the bottom, and nails, 05^{11} Wheels and bufhes 4 ft . 2 lb . at 2 d . per lb o 10 Nogs and boxes for mottys, or fticks, to diftinguinh the Corf,.. ○ 06

[^2]: * 37 Hundred parts of an inch.

[^3]: SPECIMEN of an ORDER to the BRASS FOUNDER. For the Articles of a 60 inch Cylinder.
 1 Injection cock with fquare fhanks, $4 \frac{1}{\pi}$ inches by $1 \frac{1}{4}$ inch water way.
 9 Feeding cocks made in the fop cock way, with a hole in the key to turn by hand occafionally. 2 Steam vales 4 inches the leaft diameter.
 1 Snifting cock 2 inches, infide diameter made the flop cock way.
 1 Pifton cock (bib) 2 inches infide diameter. \& Gauge cocks (bib) $1 \frac{7}{\%}$ do.

 1. Air cock (bib) to fix in the fink pipe $\frac{3}{4}$ inch infide diameter.
 2. Jack head vale 5 inches the leaft diameter.
